| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | | Acceleration field of a moving fluid      165—166 Angular velocity      45
 Antisymmetrization      107
 Arc length      32 86
 Archimedes’ law      208
 Aris, R.      72 96 97 204 206
 Axial vector      18 109
 Barotropic flow      233
 Basis      9
 Basis vectors      9 85
 Basis vectors, direct transformation of      13
 Basis vectors, direct transformation of, coefficients of      13
 Basis vectors, inverse transformation of      13
 Basis vectors, inverse transformation of, coefficients of      13
 Basis, left-handed      21
 Basis, local      85
 Basis, orthogonal      34
 Basis, reciprocal      24
 Basis, right-handed      21
 Bernoulli’s law      234
 Biharmonic equation      232
 Biot — Savart law      214
 Bipolar coordinates      101
 Bound vector      3
 Boyanovitch, D.      240
 Buck, R. C      140
 Cartesian tensors      61
 Center of charge      48
 Center of mass      54
 Characteristic directions      109
 Characteristic equation      114
 Characteristic plane      119
 Characteristic values      109
 Characteristic vectors      109
 Christoffel symbols      187—190
 Christoffel symbols of the first kind      187
 Christoffel symbols of the second kind      188
 Circulation      136 235 236
 Collinearity condition      43
 Collision of particles      49—51
 components      15
 Components, contravariant      28
 Components, covariant      28
 Components, physical      30
 Constitutive relations      228
 Contravariant components      28
 Contravariant components, relation of, to covariant components      31
 Control surface      210
 Coordinate curve      11 84
 Coordinate curve, positive direction along      85
 Coordinate surface      84
 Coordinate system(s), nonorthogonal      13
 Coordinate system(s), oblique      10
 Coordinate system(s), orthogonal      11 86
 Coordinate system(s), rectangular      10ff
 Coordinate system(s), rectangular, transformation of      38—39
 coordinates      11
 Coordinates, curvilinear      11 82—88
 Coordinates, cylindrical      82
 Coordinates, generalized      82
 Coordinates, generalized, basis of      85
 Coordinates, orthogonal      11 86
 Coordinates, polar      11 12
 Coordinates, polar, generalized      12
 Coordinates, spherical      83
 Covariant components      28
 Covariant components, relation of, to contravariant components      31
 Covariant derivative      186
 Covariant differentiation      185—196
 Covariant differentiation of tensors      190—191
 Covariant differentiation of vectors      185—187
 Cross product      see “Vector product”
 Curl      161—164
 Current density      226
 Curvature      175
 Curvilinear coordinates      11 86
 Cylindrical coordinates      82
 Deformation tensor      2 70—72
 Del operator      see “Operator
  ” Deviators      122
 Dielectric tensor      100
 Differential operators      168ff
 Differential operators in generalized coordinates      192—196
 Differential operators in orthogonal curvilinear coordinates      171—174
 Dipole moment      47
 Directional derivative of a scalar field      147—148
 Directional derivative of a vector field      164—165
 Dirichlet problem      222
 Dissipation function      127
 Divergence      155—161 193—194
 Divergence of the velocity field of a fluid      157—158
 Divergence theorem      157
 Dot product      see “Scalar product”
 Dummy indices      34 91
 Dyad      93
 d’Alembertian operator      230
 Efflux      154
 Eigenvalues      109
 Eigenvectors      109
 Electric displacement      110 228
 electric field      19 110 226
 Electromagnetic waves      244
 Electromagnetic waves, plane monochromatic      245
 Electromotive force      226
 Equation of continuity      159
 Eulerian angles      46
 Faraday’s law of induction      226
 Finite rotations      4—5
 Fluid contour      240
 Fluid dynamics      203—211
 Fluid motion, equations of      203—208
 Flux density      209
 Free energy      133
 Free vector      2
 Frenet — Serret formulas      176
 Fundamental theorem of vector analysis      223
 Gauss’ Theorem      137—139
 Gradient      92 147 150—151 192—193
 Green’s formulas      201
 Green’s Theorem      139—140
 Harmonic functions      219
 Harmonic functions, properties of      220—222
 Helmholtz’s theorem      249
 Higher-order tensors      76—77
 Higher-order tensors in generalized coordinates      90
 Hodograph      35
 Homogeneous form of degree      3 76
 Homogeneous linear form      76
 Homogeneous quadratic form      76
 Ideal fluid      207
 Infinitesimal rotations      5 44—45
 Influx      154
 Inhomogeneous wave equation      230
 Integral theorems      196—203
 Integral theorems, related to Gauss’ theorem      197—198
 Integral theorems, related to Stokes’ theorem      198—200
 Invariance of tensor equations      81—82
 Invariants of a tensor      121
 Isotropic tensor      96
 Kibel, I. A.      240
 Kochin, N. E.      240
 Kronecker delta      39
 Kutta — Joukowski theorem      235—236
 Laplace’s equation      219
 Laplacian (operator)      169 194—196
 Laplacian field      219
 Left-handed basis      21
 Level surface      146
 Line integral      136
 Lorentz condition      230
 
 | Magnetic field      19 226 Magnetic induction      228
 magnetization      228
 Magnetomotive force      227
 Marion, J. B.      231
 Matrix      64
 Maxwell’s equations      226
 Metric coefficients      34 87
 Metric tensor      32 86
 Metric tensor, verification of tensor character of      90
 Moment of a force      19 56
 Moment of inertia tensor      68—70 110—113
 Momentum flux density      209
 Momentum theorem      209
 Motion under gravitational attraction      53—54
 Moving trihedral      175
 Multiple-valued potential      213
 Multiply connected region      145
 Nabla operator      see “Operator
  ” Navier — Stokes equation      207
 Neumann problem      222
 Neutral charge system      48
 Newton’s Second Law      82
 Newton’s second law, invariance of      82
 Nutation      46
 Ohm’s Law      228
 Operator
  149 168ff Orthogonal bases      34
 Orthogonal coordinates      11 86
 Orthogonal transformation      122
 Orthogonal transformation, improper      123
 Orthogonal transformation, proper      123
 Orthogonality conditions      39
 Orthonormality conditions      15
 Osculating plane      175
 Parallel displacement condition      187
 Physical components      30
 Poisson’s equation      224
 Polar axis      11
 Polar vector      18
 Polarization      228
 Pole      11
 Potential      211
 Potential field      211
 Potential, multiple-valued      213
 Poynting’s vector      232
 Precession      46
 Principal directions      109
 Pseudotensor(s)      109 122—126
 Pseudotensor(s), components of      124
 Pseudotensor(s), unit      126
 Quadric surface      64
 Radius of curvature      175
 Radius of torsion      176
 Radok, J. R. M.      240
 Rate of deformation tensor      72—75
 Reciprocal bases      24
 Retarded potentials      244
 Ricci’s theorem      191
 Right-handed basis      21
 Roze, N. V.      240
 Scalar fields      145 ff.
 Scalar potential      211 228
 Scalar product      14
 Scalar product in variance of      79
 Scalar product, commutativity of      14
 Scalar product, distributivity of      15
 Scalar triple product      20
 Second-order tensors      63—75
 Second-order tensors, components of      64
 Second-order tensors, transformation law of      64
 Shilov, G. E.      123 133
 Silverman, R. A.      123
 Simply connected region      144
 Singular point      152
 Sink      154 155 160
 Sink, strength of      155 160
 Sliding vector      3
 Solenoidal field      216
 Source      154 155 160
 Source, strength of      155 160
 Spherical coordinates      83
 Spherical trigonometry      41—42
 Stokes’ Theorem      137 141—144
 Strain tensor      see “Deformation tensor”
 Stream function      217
 streamline      151 217
 Stress tensor      1 66—68 110 167
 Stress tensor in generalized coordinates      92
 Stress tensor, viscous      96
 Summation convention      26—27
 Symmetrization      107
 Tensor analysis      134ff
 Tensor ellipsoid      118—120
 Tensor field      135 166
 Tensor field, continuous      135
 Tensor field, flux of      166
 Tensor field, homogeneous      135
 Tensor field, nonstationary      135
 Tensor function of a scalar function      134
 Tensor function of a scalar function, derivative of      134
 Tensor(s) in generalized coordinate systems      88
 Tensor(s), addition of      103
 Tensor(s), antisymmetric      106
 Tensor(s), antisymmetric part of      107
 Tensor(s), antisymmetric, equivalence of, to axial vector      107—109
 Tensor(s), Cartesian      61
 Tensor(s), characteristic directions of      109
 Tensor(s), characteristic equation of      114
 Tensor(s), characteristic values of      109
 Tensor(s), characteristic vectors of      109
 Tensor(s), contraction of      104
 Tensor(s), contravariant      91
 Tensor(s), contravariant components of      89
 Tensor(s), covariant      91
 Tensor(s), covariant components of      89
 Tensor(s), covariant differentiation of      190—191
 Tensor(s), deformation      70—72
 Tensor(s), eigenvalues of      109
 Tensor(s), eigenvectors of      109
 Tensor(s), equations      81
 Tensor(s), equations, invariance of      81—82
 Tensor(s), first-order      61—63
 Tensor(s), invariants of      121
 Tensor(s), isotropic      96
 Tensor(s), mixed      91
 Tensor(s), mixed components of      89
 Tensor(s), moment of inertia      68—70
 Tensor(s), moment of inertia in two dimensions      110—113
 Tensor(s), multiplication of      104
 Tensor(s), of order n      59 76
 Tensor(s), of order n, components of      59 76
 Tensor(s), of order n, components of, transformation law of      76
 Tensor(s), physical components of      91
 Tensor(s), principal directions of      109
 Tensor(s), product of      104
 Tensor(s), product of, inner      105
 Tensor(s), product of, outer      104
 Tensor(s), rate of deformation      72—75
 Tensor(s), reduction of, to principal axes      109—120
 Tensor(s), second-order      63—75
 Tensor(s), stress      66—68 110
 Tensor(s), symmetric      105
 Tensor(s), symmetric part of      107
 Tensor(s), transformation of, under rotation about a coordinate axis      77—81
 Tensor(s), two-dimensional      79
 Tensor(s), unit      70
 Tensor(s), zeroth-order      60—61
 Thomson’s theorem      241
 Torsion      176
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |