Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Hamilton J.D. — Time Series Analysis
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Time Series Analysis
Àâòîð: Hamilton J.D.
Àííîòàöèÿ: The last decade has brought dramatic changes in the way that researchers analyze time series data. This much-needed book synthesizes all of the major recent advances and develops a single, coherent presentation of the current state of the art of this increasingly important field. James Hamilton provides for the first time a thorough and detailed textbook account of important innovations such as vector autoregressions, estimation by generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, Hamilton presents traditional tools for analyzing dynamic systems, including linear representations, autocovariance, generating functions, spectral analysis, and the Kalman filter, illustrating their usefulness both for economic theory and for studying and interpreting real-world data. This book is intended to provide students, researchers, and forecasters with a definitive, self-contained survey of dynamic systems, econometrics, and time series analysis. Starting from first principles, Hamilton's lucid presentation makes both old and new developments accessible to first-year graduate students and nonspecialists. Moreover, the work's thoroughness and depth of coverage will make Time Series Analysis an invaluable reference for researchers at the frontiers of the field. Hamilton achieves these dual objectives by including numerous examples that illustrate exactly how the theoretical results are used and applied in practice, while relegating many details to mathematical appendixes at the end of chapters. As an intellectual roadmap of the field for students and researchers alike, this volume promises to be the authoritative guide for years to come.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1994
Êîëè÷åñòâî ñòðàíèö: 820
Äîáàâëåíà â êàòàëîã: 14.09.2007
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
see "Order in probability"
202
2SLS see "Two-stage least squares"
Absolute summability 52 64
Absolute summability, autocovariances and 52
Absolute summability, matrix sequences and 262 264
Absorbing state 680
Adaptive expectatbns 440
Adjoint 727
Ahn, S.K. 601 630
Aliasing 161
Almon, Shirley 360
Amemiya, Takeshi 227 421
Amplitude 708
Anderson, Brian D.O. 47 373 403
Anderson, T.W. 152 195
Andrews — Monahan standard errors 285
Andrews, Donald W.K. 190 191 197 284 285 412 425 513 533 618 698
Angrist, Joshua D. 253
Annihilation operator 78
ar see "Autoregression"
arch see "Autoregressive conditional heteroskedasticity"
Argand diagram 709
Arima see "Autoregressive integrated moving average"
ARMA see "Autoregressive moving average"
Ashley, Richard 109
Asset prices 360 422 667
Asymptotic distribution see also "Convergence"
Asymptotic distribution of 2SLS estimator 241—242
Asymptotic distribution, autoregression and 215
Asymptotic distribution, GMM and 414—415
Asymptotic distribution, limit theorems for serially dependent observations 186—195
Asymptotic distribution, review of 180—186
Asymptotic distribution, time trends and 454—460
Asymptotic distribution, unit root process and 475—477 504—506
Asymptotic distribution, vector autoregression and 298—302
Autocorrelation of a covariance-stationary process 49
Autocorrelation, GLS and 221—222
Autocorrelation, partial 111—112
Autocorrelation, sample 110—111
Autocovariance 45
Autocovariance matrix 261
Autocovariance, population spectrum and 155
Autocovariance, vector autoregression and 264—266
Autocovariance-generating function 61—64
Autocovariance-generating function of sums of processes 106
Autocovariance-generating function, factoring 391
Autocovariance-generating function, Kalman filter and 391—394
Autocovariance-generating function, vector processes and 266—269
Autoregression (AR) see also "Unit root process" "Vector
Autoregression (AR), first order 53—56 486—504
Autoregression (AR), forecasting 80—82
Autoregression (AR), maximum likelihood estimation for Gaussian 118—127
Autoregression (AR), parameter estimation 215—217
Autoregression (AR), pth order 58—59
Autoregression (AR), second order 56—58
Autoregression (AR), sums of 107—108
Autoregressive conditional heteroskedasticity (ARCH) ARCH-M 667
Autoregressive conditional heteroskedasticity (ARCH), comparison of alternative models 672
Autoregressive conditional heteroskedasticity (ARCH), EGARCH 668—669
Autoregressive conditional heteroskedasticity (ARCH), GARCH 665—667
Autoregressive conditional heteroskedasticity (ARCH), Gaussian disturbances 660—661
Autoregressive conditional heteroskedasticity (ARCH), generalized method of moments 664
Autoregressive conditional heteroskedasticity (ARCH), IGARCH 667
Autoregressive conditional heteroskedasticity (ARCH), maximum likelihood 660—662
Autoregressive conditional heteroskedasticity (ARCH), multivariate models 670—671
Autoregressive conditional heteroskedasticity (ARCH), Nelson's model 668—669
Autoregressive conditional heteroskedasticity (ARCH), non-Gaussian disturbances 661—662
Autoregressive conditional heteroskedasticity (ARCH), nonlinear specifications 669—670
Autoregressive conditional heteroskedasticity (ARCH), nonparametric estimates 671
Autoregressive conditional heteroskedasticity (ARCH), quasi-maximum likelihood 663—664
Autoregressive conditional heteroskedasticity (ARCH), semiparametric estimates 672
Autoregressive conditional heteroskedasticity (ARCH), testing for 664—665
Autoregressive Integrated Moving Average (ARIMA) 437
Autoregressive moving average (ARMA), autocovariance-generating function 63
Autoregressive moving average (ARMA), autoregressive processes 53—59
Autoregressive moving average (ARMA), expectations, stationarity, and ergodicity 43—47
Autoregressive moving average (ARMA), forecasting 83—84
Autoregressive moving average (ARMA), invertibility 64—68
Autoregressive moving average (ARMA), maximum likelihood estimation for Gaussian ARMA process 132—133
Autoregressive moving average (ARMA), mixed processes 59—61
Autoregressive moving average (ARMA), moving average processes 48—52
Autoregressive moving average (ARMA), non-Gaussian 127
Autoregressive moving average (ARMA), parameter estimation 132 387
Autoregressive moving average (ARMA), population spectrum for 155
Autoregressive moving average (ARMA), sums of 102—108
Autoregressive moving average (ARMA), white noise and 47—48
Baillie, Richard T. 336 573 662 666
Bandwidth 165 671
Barro, Robert J. 361
Bartlett kernel 167 276—277
Basis, cointegrating vectors and 574
Bates, Charles 427 664
Bayes's law 352
Bayesian analysis, diffuse/improper prior 353
Bayesian analysis, estimating mean of Gaussian distribution 352—353
Bayesian analysis, estimating regression model with lagged dependent variables 358
Bayesian analysis, estimating regression model with unknown variance 355—358
Bayesian analysis, introduction to 351—360
Bayesian analysis, mixture distributions 689
Bayesian analysis, Monte Carlo 365—366
Bayesian analysis, numerical methods 362—366
Bayesian analysis, posterior density 352
Bayesian analysis, prior density 351—352
Bayesian analysis, regime-switching models 689
Bayesian analysis, unit roots 532—534
Bayesian analysis, vector autoregression and 360—362
Bendt, E.K. 142 661
Bera, A.K. 670 672
Bernanke, Ben 330 335
Betancourt, Roger 226
Beveridge — Nelson decomposition 504
Beveridge, Stephen 504
Bhargava, A. 532
Bias 741
Bias, simultaneous equations 233—238
Billingsley, Patrick 481
Black, Fischer 672
Blanchard, Olivier 330 335
Block exogeneity 309 311—313
Block triangular factorization 98—100
Bloomfield, Peter 152
Blough, Stephen R. 445 562
Bollerslev, Tim 658 661 662 663 665 666 667 668 670 671 672
Bootstrapping 337
Bouissou, M.B. 305
Box — Cox transformation 126
Box — Jenkins methods 109—110
Box, George E.P. 72 109—110 111 126 132 133
Brock, W.A. 479
Brownian motion 477—479
Brownian motion, differential 547
Brownian motion, standard 478 544
Broyden, C.G. 142
Bubble 38
Burmeister, Edwin 386 388
Business cycle frequency 168—169
Butler, J.S. 664
Cai, Jun 662
Caines, Peter E. 387 388
Calculus 711—721
Campbell, John Y. 444 516 573
Canonical cointegration 618
Canonical correlation, population 630—633
Canonical correlation, sample 633—635
Cao, Charles Q. 666
Cauchy convergence 69—70
Cauchy — Schwarz inequality 49 745
Cecchetti, Stephen G. 532
Central limit theorem 185—186
Central limit theorem, functional 479—486
Central limit theorem, Martingale difference sequence 193—195
Central limit theorem, stationary stochastic process 195
Chain rule 712
Chan, N.H. 483 532
Chebyshev's inequality 182—183
Chi-square distribution 746 753
Chiang, Alpha C. 135 704
Chiang, Chin Long 19n 23n
Cho, Dongchul 672
Choi, B. 532 601
Cholesky factorization 91—92 147
Chou, Ray Y. 658 665 668
Christiano, Lawrence J. 305 445 447 653
Clarida, Richard 573
Clark, Peter K. 444
Cochrane — Orcutt estimation 224 324
Cochrane, John H. 444 445 531
Coefficient of relative risk aversion 423
Coherence, population 275
Cointegrating vector 574 648—650
Cointegration 571
Cointegration, basis 574
Cointegration, canonical 618
Cointegration, cointegrating vector 574 648—650
Cointegration, common trends representation (Stock — Watson) 578
Cointegration, description of 571—582
Cointegration, error-correction representation 580—581
Cointegration, full-information maximum likelihood and hypothesis testing 645—650
Cointegration, full-information maximum likelihood and Johansen's algorithm 635—638
Cointegration, full-information maximum likelihood and motivation for auxiliary regressions 638—639
Cointegration, full-information maximum likelihood and motivation for canonical correlations 639—642
Cointegration, full-information maximum likelihood and motivation for parameter estimates 642—643
Cointegration, full-information maximum likelihood and parameter estimates 637—638
Cointegration, full-information maximum likelihood and population canonical correlations 630—633
Cointegration, full-information maximum likelihood and sample canonical correlations 633—635
Cointegration, full-information maximum likelihood and without deterministic time trends 643—645
Cointegration, Granger representation theorem 581—582
Cointegration, hypothesis testing 601—618
Cointegration, moving average representation 574—575
Cointegration, Phillips — Ouliaris — Hansen tests 598—599
Cointegration, testing for 582—601 645
Cointegration, triangular representation (Phillips) 576—578
Cointegration, vector autoregression and 579—580
Complex congugate 710
complex numbers 708—711
Complex unit circle 709
Concentrated likelihood 638
Conditional distributions 741—742
Conditional expectation 742
Conditional expectation for Gaussian variables 102
Conditional likelihood, vector autoregression and 291—293
Conjugate pair 710
Conjugate transposes 734—735
Consistent 181 749
Consumption spending 361 572 600—601 610—612 650
Continuity 711
Continuous function 711 735
Continuous mapping theorem 482—483
Continuous time process 478
Convergence, Cauchy criterion 69—70
Convergence, for numerical optimization 134 137
Convergence, in distribution 183—185
Convergence, in mean square 182—183 749
Convergence, in probability 181—182 749
Convergence, Kalman filter and 389—390
Convergence, limits of deterministic sequences 180
Convergence, of random functions 481
Convergence, ordinary 180
Convergence, weak 183
Cooley, Thomas F. 335
Corbae, Dean 573
Correlation, canonical 630—635
Correlation, population 743
Cosine 704 706—707
Cospectrum 271—272
Covariance restrictions, identification and 246-247
Covariance, population 742
Covariance, triangular factorization and 114—115
Covariance-stationary 45—46 258
Covariance-stationary, law of large numbers and 186—189
Cox, D.R. 126 681 685
Cramer — Wold theorem 184
Cramer, Harald 157 184 411 427
Cross spectrum 270
Cross validation 671
Davidon — Fletcher — Powell 139—142
Davidon, W.C. 139—142
Davidson, James E.H. 571 572 581
Davies, R.B. 698
Day, Theodore E. 672
De Moivre's theorem 153 716—717
DeGroot, Morris H. 355 362
DeJong, David N. 533
Dempster, A.P. 387 689
Density/ies 739 see
Density/ies, unconditional 44
Dent, Warren 305
Derivative(s) of matrix expressions 294 737
Derivative(s) of simple functions 711—712
Derivative(s) of vector-valued functions 737
Derivative(s), partial 735
Derivative(s), second-order 712 736
Determinant 724—727
Determinant of block diagonal matrix 101
Deterministic time trends see "Time trends"
Diamond, Peter 335
Dickey — Fuller test 490 502 528—529 762—764
Dickey — Fuller test, augmented 516 528
Dickey — Fuller test, F test 494 524
Dickey, David A. 475 483 493 506 516 530 532
Diebold, Francis X. 361 449 671 690 691
Difference equation, dynamic multipliers 2—7
Difference equation, first-order 1—7 27—29
Difference equation, pth-order 7—20 33—36
Difference equation, repeated eigenvalues 18—19
Difference equation, second-order 17 29—33
Difference equation, simulating 10
Difference equation, solving by recursive substitution 1—2
Difference stationary 444
Distributions 739 see
Distributions, chi-square 746 753
Distributions, conditional 741—742
Distributions, convergence in 183—185
Distributions, F 205—207 357 746 756—760
Distributions, gamma 355
Distributions, Gaussian 745—746 748—749 751—752
Distributions, generalized error 668
Distributions, joint 741
Distributions, joint density- 686
Distributions, marginal 741
Distributions, mixture 685—689
Distributions, Normal 745—746 748—749 751—752
Distributions, posterior 352
Distributions, prior 351—352
Distributions, probability 739
Distributions, t 205 356—357 409—410 746 755
Doan, Thomas A. 362 402—403
Duplication matrix 301
Durbin, James 226
Durland, J. Michael 691
Durlauf, Steven N. 444 547 587
Dynamic multipliers 2—7 442—444
Dynamic multipliers, calculating by simulation 2—3
Edison, Hali J. 672
Efficient estimate 741
Efficient markets hypothesis 306
Eichenbaum, Martin 445
Eicker, F. 218
Eigenvalues 729—732
Ðåêëàìà