Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hamilton J.D. — Time Series Analysis
Hamilton J.D. — Time Series Analysis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Time Series Analysis

Àâòîð: Hamilton J.D.

Àííîòàöèÿ:

The last decade has brought dramatic changes in the way that researchers analyze time series data. This much-needed book synthesizes all of the major recent advances and develops a single, coherent presentation of the current state of the art of this increasingly important field. James Hamilton provides for the first time a thorough and detailed textbook account of important innovations such as vector autoregressions, estimation by generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, Hamilton presents traditional tools for analyzing dynamic systems, including linear representations, autocovariance, generating functions, spectral analysis, and the Kalman filter, illustrating their usefulness both for economic theory and for studying and interpreting real-world data. This book is intended to provide students, researchers, and forecasters with a definitive, self-contained survey of dynamic systems, econometrics, and time series analysis. Starting from first principles, Hamilton's lucid presentation makes both old and new developments accessible to first-year graduate students and nonspecialists. Moreover, the work's thoroughness and depth of coverage will make Time Series Analysis an invaluable reference for researchers at the frontiers of the field. Hamilton achieves these dual objectives by including numerous examples that illustrate exactly how the theoretical results are used and applied in practice, while relegating many details to mathematical appendixes at the end of chapters. As an intellectual roadmap of the field for students and researchers alike, this volume promises to be the authoritative guide for years to come.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1994

Êîëè÷åñòâî ñòðàíèö: 820

Äîáàâëåíà â êàòàëîã: 14.09.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$O_{p}$      see "Order in probability"
$R^{2}$      202
2SLS      see "Two-stage least squares"
Absolute summability      52 64
Absolute summability, autocovariances and      52
Absolute summability, matrix sequences and      262 264
Absorbing state      680
Adaptive expectatbns      440
Adjoint      727
Ahn, S.K.      601 630
Aliasing      161
Almon, Shirley      360
Amemiya, Takeshi      227 421
Amplitude      708
Anderson, Brian D.O.      47 373 403
Anderson, T.W.      152 195
Andrews — Monahan standard errors      285
Andrews, Donald W.K.      190 191 197 284 285 412 425 513 533 618 698
Angrist, Joshua D.      253
Annihilation operator      78
ar      see "Autoregression"
arch      see "Autoregressive conditional heteroskedasticity"
Argand diagram      709
Arima      see "Autoregressive integrated moving average"
ARMA      see "Autoregressive moving average"
Ashley, Richard      109
Asset prices      360 422 667
Asymptotic distribution      see also "Convergence"
Asymptotic distribution of 2SLS estimator      241—242
Asymptotic distribution, autoregression and      215
Asymptotic distribution, GMM and      414—415
Asymptotic distribution, limit theorems for serially dependent observations      186—195
Asymptotic distribution, review of      180—186
Asymptotic distribution, time trends and      454—460
Asymptotic distribution, unit root process and      475—477 504—506
Asymptotic distribution, vector autoregression and      298—302
Autocorrelation of a covariance-stationary process      49
Autocorrelation, GLS and      221—222
Autocorrelation, partial      111—112
Autocorrelation, sample      110—111
Autocovariance      45
Autocovariance matrix      261
Autocovariance, population spectrum and      155
Autocovariance, vector autoregression and      264—266
Autocovariance-generating function      61—64
Autocovariance-generating function of sums of processes      106
Autocovariance-generating function, factoring      391
Autocovariance-generating function, Kalman filter and      391—394
Autocovariance-generating function, vector processes and      266—269
Autoregression (AR)      see also "Unit root process" "Vector
Autoregression (AR), first order      53—56 486—504
Autoregression (AR), forecasting      80—82
Autoregression (AR), maximum likelihood estimation for Gaussian      118—127
Autoregression (AR), parameter estimation      215—217
Autoregression (AR), pth order      58—59
Autoregression (AR), second order      56—58
Autoregression (AR), sums of      107—108
Autoregressive conditional heteroskedasticity (ARCH) ARCH-M      667
Autoregressive conditional heteroskedasticity (ARCH), comparison of alternative models      672
Autoregressive conditional heteroskedasticity (ARCH), EGARCH      668—669
Autoregressive conditional heteroskedasticity (ARCH), GARCH      665—667
Autoregressive conditional heteroskedasticity (ARCH), Gaussian disturbances      660—661
Autoregressive conditional heteroskedasticity (ARCH), generalized method of moments      664
Autoregressive conditional heteroskedasticity (ARCH), IGARCH      667
Autoregressive conditional heteroskedasticity (ARCH), maximum likelihood      660—662
Autoregressive conditional heteroskedasticity (ARCH), multivariate models      670—671
Autoregressive conditional heteroskedasticity (ARCH), Nelson's model      668—669
Autoregressive conditional heteroskedasticity (ARCH), non-Gaussian disturbances      661—662
Autoregressive conditional heteroskedasticity (ARCH), nonlinear specifications      669—670
Autoregressive conditional heteroskedasticity (ARCH), nonparametric estimates      671
Autoregressive conditional heteroskedasticity (ARCH), quasi-maximum likelihood      663—664
Autoregressive conditional heteroskedasticity (ARCH), semiparametric estimates      672
Autoregressive conditional heteroskedasticity (ARCH), testing for      664—665
Autoregressive Integrated Moving Average (ARIMA)      437
Autoregressive moving average (ARMA), autocovariance-generating function      63
Autoregressive moving average (ARMA), autoregressive processes      53—59
Autoregressive moving average (ARMA), expectations, stationarity, and ergodicity      43—47
Autoregressive moving average (ARMA), forecasting      83—84
Autoregressive moving average (ARMA), invertibility      64—68
Autoregressive moving average (ARMA), maximum likelihood estimation for Gaussian ARMA process      132—133
Autoregressive moving average (ARMA), mixed processes      59—61
Autoregressive moving average (ARMA), moving average processes      48—52
Autoregressive moving average (ARMA), non-Gaussian      127
Autoregressive moving average (ARMA), parameter estimation      132 387
Autoregressive moving average (ARMA), population spectrum for      155
Autoregressive moving average (ARMA), sums of      102—108
Autoregressive moving average (ARMA), white noise and      47—48
Baillie, Richard T.      336 573 662 666
Bandwidth      165 671
Barro, Robert J.      361
Bartlett kernel      167 276—277
Basis, cointegrating vectors and      574
Bates, Charles      427 664
Bayes's law      352
Bayesian analysis, diffuse/improper prior      353
Bayesian analysis, estimating mean of Gaussian distribution      352—353
Bayesian analysis, estimating regression model with lagged dependent variables      358
Bayesian analysis, estimating regression model with unknown variance      355—358
Bayesian analysis, introduction to      351—360
Bayesian analysis, mixture distributions      689
Bayesian analysis, Monte Carlo      365—366
Bayesian analysis, numerical methods      362—366
Bayesian analysis, posterior density      352
Bayesian analysis, prior density      351—352
Bayesian analysis, regime-switching models      689
Bayesian analysis, unit roots      532—534
Bayesian analysis, vector autoregression and      360—362
Bendt, E.K.      142 661
Bera, A.K.      670 672
Bernanke, Ben      330 335
Betancourt, Roger      226
Beveridge — Nelson decomposition      504
Beveridge, Stephen      504
Bhargava, A.      532
Bias      741
Bias, simultaneous equations      233—238
Billingsley, Patrick      481
Black, Fischer      672
Blanchard, Olivier      330 335
Block exogeneity      309 311—313
Block triangular factorization      98—100
Bloomfield, Peter      152
Blough, Stephen R.      445 562
Bollerslev, Tim      658 661 662 663 665 666 667 668 670 671 672
Bootstrapping      337
Bouissou, M.B.      305
Box — Cox transformation      126
Box — Jenkins methods      109—110
Box, George E.P.      72 109—110 111 126 132 133
Brock, W.A.      479
Brownian motion      477—479
Brownian motion, differential      547
Brownian motion, standard      478 544
Broyden, C.G.      142
Bubble      38
Burmeister, Edwin      386 388
Business cycle frequency      168—169
Butler, J.S.      664
Cai, Jun      662
Caines, Peter E.      387 388
Calculus      711—721
Campbell, John Y.      444 516 573
Canonical cointegration      618
Canonical correlation, population      630—633
Canonical correlation, sample      633—635
Cao, Charles Q.      666
Cauchy convergence      69—70
Cauchy — Schwarz inequality      49 745
Cecchetti, Stephen G.      532
Central limit theorem      185—186
Central limit theorem, functional      479—486
Central limit theorem, Martingale difference sequence      193—195
Central limit theorem, stationary stochastic process      195
Chain rule      712
Chan, N.H.      483 532
Chebyshev's inequality      182—183
Chi-square distribution      746 753
Chiang, Alpha C.      135 704
Chiang, Chin Long      19n 23n
Cho, Dongchul      672
Choi, B.      532 601
Cholesky factorization      91—92 147
Chou, Ray Y.      658 665 668
Christiano, Lawrence J.      305 445 447 653
Clarida, Richard      573
Clark, Peter K.      444
Cochrane — Orcutt estimation      224 324
Cochrane, John H.      444 445 531
Coefficient of relative risk aversion      423
Coherence, population      275
Cointegrating vector      574 648—650
Cointegration      571
Cointegration, basis      574
Cointegration, canonical      618
Cointegration, cointegrating vector      574 648—650
Cointegration, common trends representation (Stock — Watson)      578
Cointegration, description of      571—582
Cointegration, error-correction representation      580—581
Cointegration, full-information maximum likelihood and hypothesis testing      645—650
Cointegration, full-information maximum likelihood and Johansen's algorithm      635—638
Cointegration, full-information maximum likelihood and motivation for auxiliary regressions      638—639
Cointegration, full-information maximum likelihood and motivation for canonical correlations      639—642
Cointegration, full-information maximum likelihood and motivation for parameter estimates      642—643
Cointegration, full-information maximum likelihood and parameter estimates      637—638
Cointegration, full-information maximum likelihood and population canonical correlations      630—633
Cointegration, full-information maximum likelihood and sample canonical correlations      633—635
Cointegration, full-information maximum likelihood and without deterministic time trends      643—645
Cointegration, Granger representation theorem      581—582
Cointegration, hypothesis testing      601—618
Cointegration, moving average representation      574—575
Cointegration, Phillips — Ouliaris — Hansen tests      598—599
Cointegration, testing for      582—601 645
Cointegration, triangular representation (Phillips)      576—578
Cointegration, vector autoregression and      579—580
Complex congugate      710
complex numbers      708—711
Complex unit circle      709
Concentrated likelihood      638
Conditional distributions      741—742
Conditional expectation      742
Conditional expectation for Gaussian variables      102
Conditional likelihood, vector autoregression and      291—293
Conjugate pair      710
Conjugate transposes      734—735
Consistent      181 749
Consumption spending      361 572 600—601 610—612 650
Continuity      711
Continuous function      711 735
Continuous mapping theorem      482—483
Continuous time process      478
Convergence, Cauchy criterion      69—70
Convergence, for numerical optimization      134 137
Convergence, in distribution      183—185
Convergence, in mean square      182—183 749
Convergence, in probability      181—182 749
Convergence, Kalman filter and      389—390
Convergence, limits of deterministic sequences      180
Convergence, of random functions      481
Convergence, ordinary      180
Convergence, weak      183
Cooley, Thomas F.      335
Corbae, Dean      573
Correlation, canonical      630—635
Correlation, population      743
Cosine      704 706—707
Cospectrum      271—272
Covariance restrictions, identification and      246-247
Covariance, population      742
Covariance, triangular factorization and      114—115
Covariance-stationary      45—46 258
Covariance-stationary, law of large numbers and      186—189
Cox, D.R.      126 681 685
Cramer — Wold theorem      184
Cramer, Harald      157 184 411 427
Cross spectrum      270
Cross validation      671
Davidon — Fletcher — Powell      139—142
Davidon, W.C.      139—142
Davidson, James E.H.      571 572 581
Davies, R.B.      698
Day, Theodore E.      672
De Moivre's theorem      153 716—717
DeGroot, Morris H.      355 362
DeJong, David N.      533
Dempster, A.P.      387 689
Density/ies      739 see
Density/ies, unconditional      44
Dent, Warren      305
Derivative(s) of matrix expressions      294 737
Derivative(s) of simple functions      711—712
Derivative(s) of vector-valued functions      737
Derivative(s), partial      735
Derivative(s), second-order      712 736
Determinant      724—727
Determinant of block diagonal matrix      101
Deterministic time trends      see "Time trends"
Diamond, Peter      335
Dickey — Fuller test      490 502 528—529 762—764
Dickey — Fuller test, augmented      516 528
Dickey — Fuller test, F test      494 524
Dickey, David A.      475 483 493 506 516 530 532
Diebold, Francis X.      361 449 671 690 691
Difference equation, dynamic multipliers      2—7
Difference equation, first-order      1—7 27—29
Difference equation, pth-order      7—20 33—36
Difference equation, repeated eigenvalues      18—19
Difference equation, second-order      17 29—33
Difference equation, simulating      10
Difference equation, solving by recursive substitution      1—2
Difference stationary      444
Distributions      739 see
Distributions, chi-square      746 753
Distributions, conditional      741—742
Distributions, convergence in      183—185
Distributions, F      205—207 357 746 756—760
Distributions, gamma      355
Distributions, Gaussian      745—746 748—749 751—752
Distributions, generalized error      668
Distributions, joint      741
Distributions, joint density-      686
Distributions, marginal      741
Distributions, mixture      685—689
Distributions, Normal      745—746 748—749 751—752
Distributions, posterior      352
Distributions, prior      351—352
Distributions, probability      739
Distributions, t      205 356—357 409—410 746 755
Doan, Thomas A.      362 402—403
Duplication matrix      301
Durbin, James      226
Durland, J. Michael      691
Durlauf, Steven N.      444 547 587
Dynamic multipliers      2—7 442—444
Dynamic multipliers, calculating by simulation      2—3
Edison, Hali J.      672
Efficient estimate      741
Efficient markets hypothesis      306
Eichenbaum, Martin      445
Eicker, F.      218
Eigenvalues      729—732
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå