Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Hamilton J.D. — Time Series Analysis
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Time Series Analysis
Àâòîð: Hamilton J.D.
Àííîòàöèÿ: The last decade has brought dramatic changes in the way that researchers analyze time series data. This much-needed book synthesizes all of the major recent advances and develops a single, coherent presentation of the current state of the art of this increasingly important field. James Hamilton provides for the first time a thorough and detailed textbook account of important innovations such as vector autoregressions, estimation by generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, Hamilton presents traditional tools for analyzing dynamic systems, including linear representations, autocovariance, generating functions, spectral analysis, and the Kalman filter, illustrating their usefulness both for economic theory and for studying and interpreting real-world data. This book is intended to provide students, researchers, and forecasters with a definitive, self-contained survey of dynamic systems, econometrics, and time series analysis. Starting from first principles, Hamilton's lucid presentation makes both old and new developments accessible to first-year graduate students and nonspecialists. Moreover, the work's thoroughness and depth of coverage will make Time Series Analysis an invaluable reference for researchers at the frontiers of the field. Hamilton achieves these dual objectives by including numerous examples that illustrate exactly how the theoretical results are used and applied in practice, while relegating many details to mathematical appendixes at the end of chapters. As an intellectual roadmap of the field for students and researchers alike, this volume promises to be the authoritative guide for years to come.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1994
Êîëè÷åñòâî ñòðàíèö: 820
Äîáàâëåíà â êàòàëîã: 14.09.2007
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Rogers, John H. 677
Rothenberg, Thomas J. 247 250 334 362 388 411
Rothschild, Michael 671
Royden, H.L. 191
RSS see "Residual sum of squares"
Rubin, D.B. 387 689
Rudebusch, Glenn D. 449
Runkle, David E. 337 339 663 669 672
Ruud, Paul A. 250
Said, Said E. 530 532
Saikkonen, Pentti 608
Sample autocorrelations 110—111
Sample canonical correlations 633—635
Sample likelihood function 747
Sample mean, definition of 741
Sample mean, variance of 188 279—281
Sample moments 740—741
Sample periodogram 158—163 272—275
Sargan, J.D. 532
Sargent, Thomas J. 33 34 39 41 67 78 109 335 423
Savin, N.E. 216 488 516
scalar 721
Schmidt, Peter 513 516 532
Scholes, Myron 672
Schwert, G. William 513 516 668 672
Score 427—428
Seasonality 167—169
Second moments 45 92—95
Second moments, consistent estimation of 192—193
Second-order autoregressive process 56—58
Second-order difference equations 17 29—33
Seemingly unrelated regressions 315
Selover, David D. 573
Serial correlation 225—227
Shapiro, Matthew D. 335
Shiller, Robert J. 360 573
Shin, Y. 532
Shumway, R.H. 387
Sill, Keith 426
Simon, David P. 664
Sims — Stock — Watson scaling matrix 457
Sims — Stock — Watson transformation 464 518
Sims, Christopher A. 291 297 302 304 330 402—403 445 454 455 464 483 532—534 547 549 555
Simultaneous equations see also "Two-stage least squares"
Simultaneous equations, bias 233—238 252—253
Simultaneous equations, estimation based on the reduced form 250—252
Simultaneous equations, full-information maximum likelihood estimation 247—250
Simultaneous equations, identification 243—247
Simultaneous equations, instrumental variables and two-stage least squares 238—243
Simultaneous equations, nonlinear systems of 421—422
Simultaneous equations, overview of 252—253
Sine 704 706—707
Singleton, Kenneth J. 422 424
singular 728
Singularity 689
Sinusoidal 706
Skew 746
Small-sample distribution 216—217 516
Smith, A.F.M. 689
Smoothing, Kalman filter and 394—397
Solo, Victor 195 483 532 545 547
Sowell, Fallaw 449 532
Spectral analysis, population spectrum 152—157 163—167 269
Spectral analysis, sample periodogram 158—163 272—275
Spectral analysis, uses of 167—172
Spectral representation theorem 157
Spectrum see also "Kernel estimates" "Periodogram"
Spectrum, coherence 275
Spectrum, cospectrum 271—272
Spectrum, cross 270
Spectrum, estimates of 163—167 276—277 283—285
Spectrum, frequency zero and 189 283
Spectrum, gain 275
Spectrum, low-frequency 169
Spectrum, phase 275
Spectrum, population 61—62 152—157 163—167 269 276—277
Spectrum, quadrature 271
Spectrum, sample 158—163 272—275
Spectrum, sums of processes and 172
Spectrum, transfer function 278
Spectrum, vector processes and 268—278
Spurious, regression 557—562
Square summable 52
Srba, Frank 571 572 581
Standard deviation, population 740
Startz, Richard 253 427
State equation 372
State vector 372
State-space model see "Kalman filter"
Stationary/stationarity, covariance 45—46
Stationary/stationarity, difference 444
Stationary/stationarity, strictly 46
Stationary/stationarity, trend-stationary 435
Stationary/stationarity, vector 258—259
Stationary/stationarity, weakly 45—46
Steepest ascent 134—137
Stinchcombe, Maxwell 482 698
Stochastic processes, central limit theorem for stationary 195
Stochastic processes, composite 172
Stochastic processes, expectations and 43—45
Stochastic variable 739
Stock prices 37—38 306—307 422—424 668—669 672
Stock, James H. 305 376 444 445 447 454 455 464 483 532 533 547 549 555 573 578 587 601 608 613 630 653
Stoffer, D.S. 387
Stone, Charles J. 704
Strang, Gilbert 704
Structural econometric models, vector autoregression and 324—336
Student's t distribution see "t distribution"
Summable, absolute 52 64
Summable, square 52
Sums of ARMA processes 102—108
Sums of ARMA processes, AR 107—108
Sums of ARMA processes, autocovariance generating function of 106
Sums of ARMA processes, MA 102—107
Sums of ARMA processes, spectrum of 172
Sup operator 481
Superconsistent 460
Susmel, Raul 662
Swift, A.L. 127
t distribution 205 213 356—357 409—410 746 755
t statistic 204
Tauchen, George 426 427 671
taxes 361
Taylor series 713—714 737—738
Taylor theorem 713 737—738
Taylor, William E. 247
Theil, Henri 203 359 704
Theorem, Cramer — Wold 184
Theorem, De Moivre 153 716—717
Theorem, Gauss — Markov 203 222
Theorem, Granger representation 582
Theorem, Khinchine's 183
Theorem, Taylor 713 737—738
Thomas, George B., Jr. 157 166 704
Three-stage least squares 250
Tierney, Luke 363—365
Time domain 152
Time series operators 25—26
Time series process 43
Time trends 25 435 see
Time trends, approaches to 447—450
Time trends, asymptotic distribution of 454—460
Time trends, asymptotic inference for autoregressive process around 463—472
Time trends, breaks in 449—450
Time trends, hypothesis testing for 461—463
Time trends, linear 438
Time trends, OLS estimation 463
Time-varying parameters, Kalman filter and 398—403
Titterington, D.M. 689
Toda, H.Y. 554 650
Trace 723
Transition matrix 679
Transposition 723
Trend-stationary 435
Trend-stationary, comparison of unit root process and 438—444
Trend-stationary, forecasts for 439
Trends representation (Stock — Watson), common 578
Triangular factorization of a second-moment matrix and linear projection 92—95
Triangular factorization, block 98—100
Triangular factorization, covariance matrix and 114—115
Triangular factorization, description of 87—91
Triangular factorization, maximum likelihood estimation and 128—129
Triangular representation 576—578
Trigonometry 157 166 704—708
Trognon, A. 431
Two-stage least squares (2SLS), asymptotic distribution of 241—242
Two-stage least squares (2SLS), coefficient estimator 238
Two-stage least squares (2SLS), consistency of 240—241
Two-stage least squares (2SLS), general description of 238—239
Two-stage least squares (2SLS), GMM and 420—421
Two-stage least squares (2SLS), instrumental variable estimation 242—243
Uhlig, Harald 532—534
Unconditional density 44
Unconditional mean 44
Uncorrelated 92 743
Unidentified 244
Uniformly integrable 191
Unimodal 134
Unit circle 32 709
Unit root process 435—436 see "Dickey
Unit root process, asymptotic distribution 475—477 504—506
Unit root process, Bayesian analysis 532—534
Unit root process, Beveridge — Nelson decomposition 504 545—546
Unit root process, comparison of trend-stationary and 438—444
Unit root process, difference versus not to difference 651—653
Unit root process, dynamic multipliers 442—444
Unit root process, forecasts for 439—441
Unit root process, functional central limit theorem and 483—486
Unit root process, Johansen's test 646
Unit root process, meaning of tests for 444—447 515—516
Unit root process, multivariate asymptotic theory 544 547
Unit root process, observational equivalence 444—447 515—516
Unit root process, OLS estimation of autoregression 527
Unit root process, Phillips — Perron tests 506—514
Unit root process, small-sample distribution 516
Unit root process, spurious regression 557—562
Unit root process, variance ratio test 531—532
Unit root process, vector autoregression 549—557
van Dijk, H.K. 365
var see "Vector autoregression"
Variance 44—45 740
Variance of sample mean 188 279—281
Variance ratio test 531—532
Variance, decomposition 323—324
Variance, population 740
Veall, Michael R. 214
Vec operator 265
Vech operator 300—301
Vector autoregression see also "Cointegration" "Impulse-response
Vector autoregression, autocovariance generating function and 267
Vector autoregression, autocovariances and convergence results for 264—266
Vector autoregression, Bayesian analysis and 360—362
Vector autoregression, cointegration and 579—580
Vector autoregression, impulse-response function and 318—323
Vector autoregression, introduction to 257—261
Vector autoregression, likelihood ratio test 296—298
Vector autoregression, Markov chain and 679
Vector autoregression, maximum likelihood estimation and 291—302 309—318
Vector autoregression, restricted 309—318
Vector autoregression, spectrum for 276
Vector autoregression, standard errors 298 301 336—340
Vector autoregression, stationarity 259
Vector autoregression, structural econometric models and 324—336
Vector autoregression, time-varying parameters 401—403
Vector autoregression, unit roots 549—557
Vector autoregression, univariate representation 349
Vector martingale difference sequence 189
Vector processes, asymptotic results for nonstationary 544—548
Vectors, forecasting 77
Vuong, Q.H. 305
Wald form 213 299
Wald test 205 214
Wald test for maximum likelihood estimation 429—430
Wall, Kent D. 386 388
Watson, Mark W. 305 330 335 376 387 389 444 447 454 455 464 483 547 549 555 573 578 601 608 613 630 653
Wei, C.Z. 483 532
Weinbach, Gretchen C. 690 691
Weiss, Andrew A. 663
Wertz, V. 388
West, Kenneth D. 220 281—282 284 414 555 647 672
White noise, Gaussian 25 43 48
White noise, independent 48
White noise, process 47—48
White, Halbert 126 144 145 185 189 193 196 218 280 281 282 412 418 427 428 429 431 482 664 698
White, J.S. 483
White, Kenneth J. 214
Whiteman, Charles H. 39 533
Wiener process 478
Wiener — Kolmogorov prediction formula 80
Wold's decomposition 108—109
Wold's decomposition, Kalman filter and 391—394
Wold, Herman 108—109 184
Wooldridge, Jeffrey M. 431 590 591 608 663 671 672
Yeo, Stephen 571 572 581
Yoo, Byung Sam 575 596
Yule — Walker equations 59
Zellner, Arnold 315 362
Zuo, X. 672
Ðåêëàìà