Авторизация
Поиск по указателям
Cox D., Little J., O'Shea D. — Ideals, varieties, and algorithms
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Ideals, varieties, and algorithms
Авторы: Cox D., Little J., O'Shea D.
Аннотация: Algebraic Geometry is the study of systems of polynomial equations in one or more variables, asking such questions as: Does the system have finitely many solutions, and if so how can one find them? And if there are infinitely many solutions, how can they be described and manipulated? The solutions of a system of polynomial equations form a geometric object called a variety; the corresponding algebraic object is an ideal. There is a close relationship between ideals and varieties which reveals the intimate link between algebra and geometry. Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory.
The algorithms to answer questions such as those posed above are an important part of algebraic geometry. This book bases its discussion of algorithms on a generalization of the division algorithm for polynomials in one variable that was only discovered it the 1960's. Although the algorithmic roots of algebraic geometry are old, the computational aspects were neglected earlier in this century. This has changed in recent years, and new algorithms, coupled with the power of fast computers, have let to some interesting applications, for example in robotics and in geometric Theorem proving.
In preparing a new edition of "Ideals, Varieties and Algorithms" the authors present an improved proof of the Buchberger Criterion as well as a proof of Bezout's Theorem. Appendix C contains a new section on Axiom and an update about Maple, Mathematica and REDUCE.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2-nd edition
Год издания: 2006
Количество страниц: 553
Добавлена в каталог: 08.12.2013
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
15
330
2
Adams, W. 206 517 522
Admissible geometric theorem 289ff
Affine, cone over a projective variety see "Cone affine"
Affine, Dimension Theorem see "Theorem Dimension"
Agnesi, M. 24
Algebraic relation 338
Algebraically independent 294 466 469 470
Algorithm 37 142
Algorithm, algebra (subring) membership 334
Algorithm, associated primes 209
Algorithm, Buchberger’s 87 92 99 100 106 108 377 519 521
Algorithm, computation in 230
Algorithm, consistency 170
Algorithm, dimension (affine variety) 451 468
Algorithm, dimension (projective variety) 453
Algorithm, division 37ff 157 220
Algorithm, division in 33 59ff 93 194 226 227 377 518
Algorithm, division in k[x] 302 303
Algorithm, Euclidean 41 92 149 152 156 157 178 179
Algorithm, finiteness of solutions 230
Algorithm, Gaussian elimination (row reduction) 9 49 50 52 91 154 304
Algorithm, greatest common divisor 187
Algorithm, ideal equality 91
Algorithm, ideal intersection 186 194 202
Algorithm, ideal membership 34 43 93
Algorithm, ideal quotient 194 202
Algorithm, irreducibility 205
Algorithm, least common multiple 187
Algorithm, polynomial implicitization 127
Algorithm, primality 205
Algorithm, primary decomposition 209
Algorithm, projective closure 382
Algorithm, projective elimination 393
Algorithm, pseudodivision 303
Algorithm, radical 233
Algorithm, radical membership 176 292
Algorithm, rational implicitization 130
Algorithm, Ritt’s decomposition 304 309 520
Algorithm, tangent cone 485ff
Algorithm, Wu — Ritt 309 510
Altitude 299
Anderson, D. 131 521
artificial intelligence 286
Ascending chain condition (acc) 76 77 201 373 391
Associated primes question 209
Atiyah, M. 209
Automated geometric theorem proving 286ff
Automorphism of varieties 242
Axiom see "Computer algebra systems"
Baillieul, J. 282
Bajaj, C. 154 521
Barrow, I. 24
Basis, minimal 35 71 72
Basis, of an ideal see "Ideal basis
Basis, standard 74 76
Bayer, D. 72 109 119 519
Becker, J. 517
Becker, T. 80 108 176 186 206 233 278 522
Benson, C.T. 323 334 335 520
Bernoulli, J. 24
Bezier, P. 20
Billera, L. 520
Birationally equivalent varieties 250ff 470
Blow-up 494 495
Boege, W. 513 521
Brieskom, E. 424 428 520
Bruce, J.W. 134 139 143
Buchberger, B. 75 84 88 108 227 282
Canny, J. 131 154
Centroid 299
Chain, ascending, of ideals 76 78
Chain, descending, of varieties 79 201 373
Char, B. 509
Characteristic of a field see "Field"
Characteristic sets 304 309 520
Chou, S.C. 309 520
Circumcenter 299
Cissoid of Diodes see "Curve cissoid
Classification of varieties 217 252
Clemens, H. 424
Closure, projective 381 394 401 454 461
Closure, Zariski 122 190 191 197 254
CoCoa see "Computer algebra systems"
Coefficient 2
Collinear 288 299
Comaximal ideals 189
Complement of a monomial ideal 433ff
Complete intersection 464
complexity 108 109 519
Computer algebra systems 37 39 42 56 65 66 90 98 100 133 149 164 203 206 209 234 285 293 303 455 505ff 518ff
Computer algebra systems, AXIOM 37 176 206 209 505ff
Computer algebra systems, CoCoA 455 516ff
Computer algebra systems, Macaulay 176 206 455 516ff
Computer algebra systems, MACSYMA 516
Computer algebra systems, Magma 517
Computer algebra systems, Maple 37 508ff
Computer algebra systems, MAS 517
Computer algebra systems, Mathematica 37 510ff
Computer algebra systems, PoSSo 517
Computer algebra systems, REDUCE 37 176 206 209 455 512ff 521
Computer algebra systems, SCRATCHPAD 505
Computer algebra systems, SINGULAR 517
Computer graphics 521
Computer-aided geometric design (CAGD) 20 22
Cone, affine 368 369 374 453 485
Cone, projectivized tangent 495
Cone, tangent 485ff
Configuration space see "Space configuration
Congruence (mod I) 219
Conic section 27 133 351 358 399 401 415 426
Consistency question 11 45 170
Constructible set 123 259 260
Control points 21
Control polygon 21
Coordinate 235
Coordinate ring of a variety (k[V]) see "Ring coordinate
Coordinate subspace 430 435 467
Coordinate subspace, translate of 436 437 439
Coordinate, Pluecker 408ff
coordinates 235
Coordinates, homogeneous 352 360
Coordinates, Pluecker 412
Coset 347
Cox, D. 118 233 521 522
Coxeter, H.S.M. 323
Cramer’s Rule 390 500
Cross ratio 298
cube 322 327 328
Cubic, Bezier 20ff 27 520
Cubic, twisted see "Curve twisted
Curve, cissoid of Diodes 25 26
Curve, dual 348
Curve, family of 138
Curve, folium of Descartes 133
Curve, four-leaved rose 12 13 144
Curve, rational normal 383 384
Curve, twisted cubic 7 8 19 32 66 84 97 125 127 131 172 195 212 217 244 245 364 366 368 370 379—382 450 464—466
Cuspidal edge 245
Czapor, S. 521
Davenport, J.H. 39 42 44 149 188
Decomposition, minimal, of a variety 203 373 476
Decomposition, minimal, of an ideal 204
Decomposition, primary 206ff
Decomposition, question 206
Degenerate case of a geometric configuration 294 307
Degeneration 428
Degree of a projective variety 465
Degree, total, of a monomial 2 438
Degree, total, of a polynomial 2
Degree, transcendence, of a field extension 470
Dehomogenization of a polynomial 363 486
Dehomogenization of an ideal 392
Derivative, formal 46 226 474
Descending chain condition (DCC) 79 201 259 373
Desingularization 495
Determinant 151 417 499
Determinant, Vandermonde 44
Dickson’s Lemma 69
Difference of varieties 14 191
DIMENSION 8ff 11 233 279 430 431 436 439 442 450 453 457ff 466 468—471 480 481
Dimension at a point 478 491
Dimension, question 11 426ff
Discriminant 155 319
dodecahedron 328
Dominating map 472
Dual curve 348
Dual projective plane 359 399
Dual projective space 369 407
Dual variety 348
Duality of polyhedra 328
Duality, projective principle of 351
Dube, T. 108
Echelon matrix 49 75 92 410 412
Eisenbud, D. 176 206 517 522
Elimination order see "Monomial ordering elimination"
Elimination step 113
Elimination theory 17 112ff
Elimination theory, projective 384ff
Envelope 139ff
Equivalence, birational 250 470 473
Equivalence, projective 399 404
Euler line 299
Euler’s formula 369
Extension step 113
Factorization of polynomials 146ff 164
Family of curves see "Curve family
Farin, G. 520
Faugere, J. 519
Feiner, S. 521
Fiber 259
Field 1 497 520
Field of characteristic zero 180 482
Field of finite (positive) characteristic 180 402 404 410 482
Field of fractions of a domain 254
Field of rational functions (k(V)) 147 246 463 469 473
Field, algebraically closed 4 34 124 163 168 170 172 174 175 192 196 199 200 204 210 230 231 254 374—376 382 389 394 395 404 405 417 451 453 458—462 469 486
Field, finite 3—5 36
Field, fractions of a domain 245
Field, infinite 3 4 32 126 130 172 196 342 372
Final remainder (in Wu’s method) 306
Finite Generation of Invariants 327 333 336
Finiteness question 11 230 235 460
Finkbeiner, D.T. 156 166 404 469 499 500
Foley, J. 521
Folium of Descartes see "Curve folium
Follows generically from 295
Follows strictly from 292
Forward kinematic problem see "Kinematics problem of robotics forward"
Fulton, W. 423 424
Function field see "Field of
Function, algebraic 119
Function, coordinate 235
Function, polynomial 3 213
Function, rational 15 119 245 473
Garrity, T. 154 520 521
Gauss, C.F 314
Gaussian elimination see "Algorithm Gaussian
Gebauer, R. 108 513 521
Gelfand, I. 154
Gianni, P. 176 206 519
Giblin, P.J. 134 139 143
Giovini, A. 108 521
Giusti, M. 109
GL(n,k) see "Group general
Goldman, R. 131 521
Goldstine, S. 511
Grabe, H.G. 516
Graded lexicographic order see "Monomial ordering"
Graded monomial order see "Monomial ordering"
Graded reverse lexicographic order see "Monomial ordering"
Gradient 10 136 137
Graph 6 126
Grassmannian 409
greatest common divisor (GCD) 40ff 178 187
Greuel, G.-M. 517
Griffiths, P. 424
Gritzmann, P. 109
Groebner basis 31 44 74ff 113ff 127 128 130 160 170 176 186 194 226ff 244 275ff 284 293 302 309 314 316 334ff 340ff 382 388 394 485ff 519ff
Groebner basis, comprehensive 278 522
Groebner basis, conversion 519
Groebner basis, criterion for 82 104
Groebner basis, minimal 89 92
Groebner basis, reduced 90 92 170 176 292 296 374
Groebner basis, specialization of 276 278 283ff
Groebner basis, universal 522
Groebner, W. 75
Group 498
Group of symmetries of a cube 322 327 347
Group of symmetries of a tetrahedron 328
Group, cyclic 322
Group, finite matrix 321ff
Group, general linear (GL(n,k)) 321 410 418 498
Group, generators for 325
Group, Klein four- 326
Group, orbit of a point under 343
Group, permutation 322 499
Group, projective general linear (PGL(n,k)) 410
Group, subgroup of 499
Grove, L.C. 323 334 335 520
Heintz, J. 109
Hermann, G. 176 206
Herstein, I.N. 318 521
Hilbert function 452 452 459
Hilbert function, affine 447 467
Hilbert, D. 74 168 311 335 433
Hironaka, H. 76
Hodge, W.V.D. 410
Hoffmann, C. 519 520
Homogenization of a polynomial 172 364
Homogenization of an ideal 378 453 486
Hughes, J. 521
Huneke, C. 176 206
Hyperboloid 247
Hyperplane 363 400
Hyperplane at infinity 361 461
Hypersurface 363 458 461
Hypersurface, cubic 363
Hypersurface, nonsingular quadric 405
Hypersurface, quadric 363 401ff 404
Hypersurface, quartic 363
Hypersurface, quintic 363
icosahedron 328
Ideal 29 498
Ideal description question 34 47 73
Ideal membership question 34 44 47 65 70 80 93 519
Ideal of a variety (I(V)) 31 372
Ideal of leading terms 73
Ideal of relations 339
Ideal, basis of 30 35
Ideal, colon 191
Ideal, complete intersection 464
Ideal, determinantal 110
Ideal, elimination 113 340 394
Ideal, generated by a set of polynomials 29
Ideal, Groebner basis of see "Groebner basis"
Ideal, homogeneous 363 371 377
Ideal, in a ring 223
Реклама