Авторизация
Поиск по указателям
Cox D., Little J., O'Shea D. — Ideals, varieties, and algorithms
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Ideals, varieties, and algorithms
Авторы: Cox D., Little J., O'Shea D.
Аннотация: Algebraic Geometry is the study of systems of polynomial equations in one or more variables, asking such questions as: Does the system have finitely many solutions, and if so how can one find them? And if there are infinitely many solutions, how can they be described and manipulated? The solutions of a system of polynomial equations form a geometric object called a variety; the corresponding algebraic object is an ideal. There is a close relationship between ideals and varieties which reveals the intimate link between algebra and geometry. Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory.
The algorithms to answer questions such as those posed above are an important part of algebraic geometry. This book bases its discussion of algorithms on a generalization of the division algorithm for polynomials in one variable that was only discovered it the 1960's. Although the algorithmic roots of algebraic geometry are old, the computational aspects were neglected earlier in this century. This has changed in recent years, and new algorithms, coupled with the power of fast computers, have let to some interesting applications, for example in robotics and in geometric Theorem proving.
In preparing a new edition of "Ideals, Varieties and Algorithms" the authors present an improved proof of the Buchberger Criterion as well as a proof of Bezout's Theorem. Appendix C contains a new section on Axiom and an update about Maple, Mathematica and REDUCE.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2-nd edition
Год издания: 2006
Количество страниц: 553
Добавлена в каталог: 08.12.2013
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Ideal, intersection of 184 377 462
Ideal, irreducible 207
Ideal, maximal 198
Ideal, maximum principle 260
Ideal, monomial 67ff 429ff 447 448 452 467
Ideal, P-primary 207
Ideal, primary 207
Ideal, prime 195 215 254 338 378 463 469
Ideal, principal 44 177 179
Ideal, principal ideal 40 78
Ideal, product 182 377 462
Ideal, projective elimination 388 389 396
Ideal, proper 198
Ideal, quotient 191 388
Ideal, radical 35 36 173 176 177 236 237 376 378
Ideal, radical of 174 373
Ideal, saturation 194 195
Ideal, standard basis of see "Basis standard"
Ideal, sum of 181 377
Ideal, syzygy 339
Ideal, weighted homogeneous 398
Ideal-variety correspondence, affine 175 237
Ideal-variety correspondence, projective 372 376
Implicit representation 16
Implicitization 17 47 51 96 521
Inclusion-Exclusion Principle 440 444
Index of regularity 449
Inflection point see "Point inflection"
Integral domain see "Ring integral
Invariance under a group 324
Inverse kinematic problem see "Kinematics problem of robotics inverse"
Inverse lexicographic order see "Monomial ordering"
Irreducibility question 205
Irredundant, intersection of ideals 204
Irredundant, union of varieties 203
Isomorphic rings 222
Isomorphic varieties 217 237 343 468
Isotropy subgroup 347
Jenks, R. 507
Joint space see "Space joint
Joints (of robots), ball 263 266
Joints (of robots), helical 263 266
Joints (of robots), prismatic 262
Joints (of robots), revolute 262
Joints (of robots), spin 274
Jouanolou, J. 154
k(V) 463 473
Kapranov, M. 154
Kendig, K. 463 480 481
Kinematic redundancy 286
Kinematic singularities 278—280 286
Kinematics problem of robotics, forward 264
Kinematics problem of robotics, inverse 264
Kirwan, F. 423 424
Klein, F. 323
Knoerrer, H. 424 428 520
Kredel, H. 513 521
k[V] 214 219 221 246 463 466 469
Lagrange multipliers 99
Lang, S. 127 471
Lazard, D. 109 110 118 519
Leading coefficient 57
Leading monomial 57
Leading term 37 57
Leading terms, ideal of see "Ideal of
Least common multiple (LCM) 81 186
Level set 217
Lexicographic order see "Monomial ordering"
Lin, A. 510
Line at infinity 353
Line, affine 3 353
Line, limit of 487ff
Line, projective 350 352 363 406
Line, secant 487ff
Line, tangent 134 136ff
Little, J. 118 233 521 522
Local property 423 474
Locally constant 423
Loustaunau, P. 206 510 517 522
Macaulay (program) see "Computer algebra systems"
Macaulay, F.S. 154 447
MacDonald, I.G. 209
Macsyma see "Computer algebra systems"
Magma see "Computer algebra systems"
Manifold 481
Manocha, D. 118 131 154 521
Maple see "Computer algebra systems"
Mapping 406
Mapping, dominating 472
Mapping, polynomial 213
Mapping, projection 120 213 385 387 469
Mapping, pullback 239
Mapping, rational 248
Mapping, regular 213
Mapping, Segre 384
Mapping, stereographic projection 252
MAs see "Computer algebra systems"
Mathematica see "Computer algebra systems"
Matrix group 321
Matrix permutation 322
Matrix, Jacobian 278 480
Matrix, row-reduced echelon see "Echelon matrix"
Matrix, Sylvester 151
Matsumura, H. 491
Mayr, E. 109
Melenk, H. 512 514
Meyer, A. 109
Mignotte, M. 118 149
Mines, R. 149 176 206
Mishra, B. 118 309 520
Mixed order see "Monomial ordering"
Module 522
Moeller, H.M. 108 512 514
Monomial 1
Monomial ordering 53ff 70 340 394 485
Monomial ordering, elimination 72 118 119
Monomial ordering, graded 379 382 448 462 466
Monomial ordering, graded lexicographic (grlex) 55 486
Monomial ordering, graded reverse lexicographic (grlex) 56
Monomial ordering, inverse lexicographic (invlex) 58
Monomial ordering, lexicographic (lex) 54 94ff 113 114 297 316 388 486
Monomial ordering, mixed 72
Monomial ordering, product 72
Monomial ordering, weight 72
Mora, T. 108 519 521
Multidegree (multideg) 57
Multinomial coefficient 336
Multiplicity of root 45 135 143 155
Multiplicity, intersection 135 414 419ff
Mumford, D. 109 480 490 493
Neun, W. 512
Newton identities 317 320
Newton polygon 520
Newton’s method 519
Niesi, G. 108
Nilpotent 223 225 226
Noether, E. 331
Normal form 80
Nullstellensatz 4 34 36 45 122 170 191 199 231 233 297 382 425 451 461
Nullstellensatz, Hilbert’s 168 170 191
Nullstellensatz, in k[V] 237
Nullstellensatz, Projective Strong 375 453
Nullstellensatz, Projective Weak 374 389
Nullstellensatz, strong 174 199 292 374
Nullstellensatz, weak 168 199 230 374
Numerical solutions 99 118
octahedron 328
Operational space see "Space configuration
Orbit of a point 343
Orbit, G 343
Orbit, space 343
Order (of a group) 321
Ordering see "Monomial ordering"
orthocenter 299
O’Shea, D. 118 233 521 522
Parametric representation 125
Parametric representation, polynomial 16 196 237 342
Parametric representation, rational 15 129 197
Parametrization 17
Partial solution 114ff 120
Path connected 423 426
Paul, R. 282
Pedoe, D. 410
Pencil of hypersurfaces 369
Pencil of lines 359
Pencil of surfaces 238
Pencil of varieties 238 370
Permutation 499
Permutation, sign of 499
Perspective 350 354
PGL(n,k) see "Group projective
Plane, affine 3
Plane, Euclidean 287
Plane, projective 349
Point of inflection 144
Point, critical 98
Point, nonsingular 136 244 427 474 478 491
Point, singular 7 134 136 244 411 478 484 519
Point, smooth 478
Point, Steiner 301
Point, vanishing 350
Polyhedron, duality 328
Polyhedron, regular 328
Polynomial 2
Polynomial ring see "Ring polynomial"
Polynomial, affine Hilbert 449 455 467
Polynomial, elementary symmetric 312
Polynomial, Hilbert 453 455 458 459
Polynomial, homogeneous 317 362
Polynomial, homogeneous component of 317
Polynomial, integer 151
Polynomial, invariant 324
Polynomial, irreducible 146ff 177
Polynomial, linear part 474
Polynomial, Newton — Gregory interpolating 445
Polynomial, partially homogeneous 386
Polynomial, reduced 45 178 416 476
Polynomial, S- 81ff 86ff 100ff
Polynomial, square-free 45 178
Polynomial, symmetric 311
Polynomial, weighted homogeneous 396 398
POSSO see "Computer algebra systems"
PostScript 22
Power sums 317
Primality question 205
Primary decomposition question 209
Principal ideal domain (PID) 40 224 522
Product order see "Monomial ordering"
Pseudocode 37 501ff
Pseudodivision 255 302ff
Pseudodivision, successive 306
Pseudoquotient 303
Pseudoremainder 303
Puiseux expansions 520
Pyramid of rays 354
Quadric hypersurface 247 363 399ff 405
Quadric hypersurface, nonsingular 405
Quadric hypersurface, over 405
Quadric hypersurface, rank of 403
Quotient, field see "Field of
Quotient, vector space 446
Quotients on division 59
R-sequence 464
Radical of an ideal see "Ideal radical
Radical, generators of 176
Radical, membership see "Algorithm radical
Rank of a matrix 279ff 481
Rank of a quadric 403
Rank, deficient 279
Rank, maximal 279
Real projective plane 349
Reduce see "Computer algebra systems"
Reduction of a polynomial 45 178 476
Remainder on division 59 79 80 86ff 93 227ff
Resultant 131 151ff 157 158ff 416
Resultant, generalized 161
Resultant, multipolynomial 131 154 521
Reverse lexicographic order see "Monomial ordering"
Reynolds operator 330
Richman, F. 149 176 206
Riemann sphere 361 367
Ring 324
Ring of invariants 324
Ring, commutative 2 215 497
Ring, coordinate, of a variety (k[V]) 235ff 256 341 463 466 468 469
Ring, homomorphism 173 222
Ring, integral domain 215 235 252 256 463 498
Ring, isomorphism 222 339
Ring, polynomial 2
Ring, quotient 220 254 339 459
Robbiano, L. 73 108 521
Robotics 10 13 14 261ff
Rose, L. 520
Roth, L. 410
Row-reduced echelon matrix see "Echelon matrix"
Ruitenberg, W. 149 176 206
Sederberg, T. 131 521
Segre map see "Mapping Segre"
Seidenberg, A. 176 206
Semple, J.G. 410
Shafarevich, I.R. 463 479 480
Singular (program) see "Computer algebra systems"
Singular locus 479
Siret, Y. 39 42 44 149 188
Smith, L. 335
Solving equations 48 93 116 519
Space, affine 3
Space, configuration (of a robot) 264
Space, joint (of a robot) 264
Space, orbit 343
Space, projective 360
Space, quotient vector 446
Space, tangent 474 491
Stabilizer 347
Stillman, M. 72 109 119 519
Strophoid 24 25
Sturmfels, B. 109 297 334 335 338 520
Subgroup 499
Subring 324
Subvariety 236
Sugar 108 521
Surface, Enneper 132
Surface, hyperboloid of one sheet 247
Surface, intersection 520
Surface, ruled 98 407
Surface, tangent, to the twisted cubic 19 97 125 127 128 131 212 245
Surface, Veronese 218 384 395
Surface, Whitney umbrella 132
Sutor, R. 507
Syzygy 35 102ff 109 110
Syzygy, homogeneous 103 110
Syzygy, ideal 339
Tangent line to a curve see "Line tangent"
Tangent space to a variety see "Space tangent"
Taylor’s Formula 475 492
Term 2
tetrahedron 328
Theorem, Affine Dimension 451
Theorem, Bezout’s 412ff 420ff
Theorem, Circle, of Apollonius 290 297 306 307
Реклама