Авторизация
Поиск по указателям
do Carmo M.P. — Riemannian geometry
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Riemannian geometry
Автор: do Carmo M.P.
Аннотация: This text has been adopted at: University of Pennsylvania, Philadelphia University of Connecticut, Storrs Duke University, Durham, NC California Institute of Technology, Pasadena University of Washington, Seattle Swarthmore College, Swarthmore, PA University of Chicago, IL University of Michigan, Ann Arbor "In the reviewer's opinion, this is a superb book which makes learning a real pleasure." ¿ Revue Romaine de Mathematiques Pures et Appliquees "This main-stream presentation of differential geometry serves well for a course on Riemannian geometry, and it is complemented by many annotated exercises." ¿ Monatshefte F. Mathematik "This is one of the best (if even not just the best) book for those who want to get a good, smooth and quick, but yet thorough introduction to modern Riemannian geometry." ¿ Publicationes Mathematicae Contents: Differential Manifolds * Riemannian Metrics * Affine Connections; Riemannian Connections * Geodesics; Convex Neighborhoods * Curvature * Jacobi Fields * Isometric Immersions * Complete Manifolds; Hopf-Rinow and Hadamard Theorems * Spaces of Constant Curvature * Variations of Energy * The Rauch Comparison Theorem * The Morse Index Theorem * The Fundamental Group of Manifolds of Negative Curvature * The Sphere Theorem * Index Series: Mathematics: Theory and Applications
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1992
Количество страниц: 300
Добавлена в каталог: 14.09.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Action of a group 22 164
Action of a group, discontinuous 23 165
Action of a group, free 165
Action of a group, transitive 165
Axiom, countable basis 30
Axiom, Hausdorff 30
Axiom, of free mobility 167
Bianchi identities 91 106
Bundle, normal 134
Bundle, tangent 15
Bundle, tangent, metric in the 79 (Ex.)
Bundle, tangent, parametrization of the 15
Christoffel symbols 55 58
Clairaut's relation 78
Clifford torus 140 (Ex.)
Coefficient of conformality 169
Conformal metrics 160 181
Conformal metrics, connections of 181 (Ex.)
Connection, affine 50
Connection, compatible with the metric 53
Connection, Levi — Civita 55
Connection, normal 134
Connection, of a Riemannian submersion 186 (Ex.)
Connection, pseudo-Riemannian 59 (Ex.)
Connection, Riemannian 55
Connection, symmetric 54
Contractible subset 81 (Ex.)
Covariant derivative 50
Curvature constant 96
Curvature Gauss — Kronecker 129
Curvature mean 129 142
Curvature mean, curvature vector 133
Curvature normal 135
Curvature of a Riemannian submersion 187 (Ex.)
Curvature of horospheres and hyperspheres 184 (Ex.)
Curvature of the complex projective space 188 (Ex.)
Curvature of the hyperbolic space 162
Curvature of the sphere 131
Curvature principal 129
Curvature principal, of a Riemannian manifold 89
Curvature Ricci 97
Curvature scalar 97
Curvature scalar, as an integral 107 (Ex.)
Curvature sectional 94 131 162
Curvature sectional, constant sectional 96
Curvature sectional, geometric interpretation of 132
Curve, differentiable 6
Curve, divergent 153 (Ex.)
Curve, parametrized 42
Curve, piecewise differentiable 67
Cut locus 267
Diffeomorphism 10
Diffeomorphism, local 10
Differentiable structure 2
Distance 146
Divergence 83 (Ex.)
Divergence, as variation of volume 86 (Ex.)
Divergence, mean curvature as a 142 (Ex.)
Embedding 11 32
Energy 194
Equation, Codazzi 137
Equation, Gauss 130 135
Equation, Jacobi 111
Equation, Killing 82 (Ex.)
Equation, Ricci 135
Fields, Jacobi 111
Fields, Jacobi, on spaces of constant curvature 112
Fields, Jacobi, on symmetric spaces 121 (Ex.)
Fields, Killing 81 (Ex.)
Fields, Killing, singularities of a 82 (Ex.) 104 123 143
Fields, left invariant vector 40
Fields, parallel vector 52
Fields, variational 192
First fundamental form 35
Flat torus 42 46
Flat torus, as a minimal submanifold of 140 (Ex.)
Flow of a vector field 28 63
Focal sot 232
Formula, for the first variation 195
Formula, for the second variation 198
Free homotopy class 254
Geodesic 61
Geodesic flow 63
Geodesic frame 83 (Ex.)
Geodesic ray 153 (Ex.)
Geodesic segment 61
Geodesic sphere 70
Geodesic triangle 258
Geodesic, closed 254
Geodesic, in a Riemannian manifold 153
Geodesic, in a Riemannian manifold, ray starting from 153
Geodesic, in a surface of revolution 77 (Ex.)
Geodesic, in the hyperbolic space 162
Geodesic, in the sphere 66
Geodesic, lasso 254
Geodesic, minimizing 67
Geodesic, normalized 61
Geodesic, radial 70
Geodesic, translation along a 257
Geometry, elliptic 168
Geometry, hyperbolic 168
Geometry, non-Euclidean 167
Geometry, spherical 168
Gradient 83 (Ex.)
hessian 141 (Ex.) 277
Homogeneous space 154 (Ex.)
Horosphere 178
Hyperbolic plane 46 (Ex.)
Hyperbolic plane, completeness of 153 (Ex.)
Hyperbolic plane, connection of 58 (Ex.)
Hyperbolic plane, geodesics of 73
Hypersphere 178
Hypersurface 129
Immersion 11
Immersion, applications of Index Lemma to 221
Immersion, codimension of a 11
Immersion, isometric 39
Immersion, J.D. Moore Theorem 221
Immersion, minimal 133
Immersion, totally geodesic 132
Immersion, totally geodesic, in a Lie group 140 (Ex.)
Immersion, umbilic 182
Index form 242
Index of a quadratic form 243
Index of a quadratic form, of a critical point 277
Infinitesimal isometry see “Killing field”
Injectivity radius 271
Interior product 84 (Ex.)
inversion 169
Isometry 38
Isometry, infinitesimal 81 (Ex.)
Isometry, local 39
Jacobi identity 27
Klein bottle 25
Klein bottle, embedding in of 33 (Ex.)
Klein bottle, nonorientability of 33 (Ex.)
Laplacian 83 (Ex.) 143
Lemma, Index 212
Lemma, Index, for focal points 234
Lemma, Klingenberg 236 (Ex.)
Lemma, of Berger 282
Lemma, of Gauss 69
Lemma, Otsuki 225
Lie group 39
Lie group, connection of a 103 (Ex.)
Lie group, curvature of a 103 (Ex.)
Lie group, geodesies of a 80 (Ex.)
Lie group, Lie algebra of a 40
Lie group, one-parameter subgroup 80 (Ex.)
Line 252 (Ex.)
Lobatchevski plane see “Hyperbolic plane”
Locus, conjugate 117
Locus, cut 267
Manifold, complete 145
Manifold, differentiable 2
Manifold, Einstein 108 (Ex.)
Manifold, extendible 145
Manifold, focal point free 233
Manifold, homogeneous 154 (Ex.)
Manifold, orientable 18
Manifold, oriented 18
Manifold, product 32
Manifold, Riemannian 38
Map, conformal 168
Map, differentiable 5
Map, differential of a 10
Map, exponential 65
Map, Gauss spherical 129
Map, orientation preserving 18
Metric, bi-invariant 40
Metric, bi-invariant, on a compact Lie group 46 (Ex.)
Metric, covering 152 (Ex.)
Metric, flat torus 42
Metric, induced by a covering 165
Metric, induced by an immersion 39
Metric, left invariant 40
Metric, Lorentzian 59 (Ex.)
Metric, non-euclidean of Lobachevski 46 (Ex.)
Metric, product 42
Metric, pseudo-Riemannian 58 (Ex.)
Metric, Riemannian 38 79
Mobius band 25 33
Mobius band, infinite 33 (Ex.)
Mobius band, nonorientability of 32 (Ex.)
Multiplicity of a conjugate point 116
Neighborhood, convex 76
Neighborhood, coordinate 2
Neighborhood, normal 70
Neighborhood, normal, strongly 74
Neighborhood, totally normal 72
Normal ball 70
Normal coordinates 86 (Ex.)
Nullity of a quadratic form 243
Orientable double covering 34 (Ex.)
Orientation 18
Parallel transport 52
Parametrization 2
Parametrization, associated basis to a 9
Parametrized surface 67
Partition of unity 30
Point, conjugate 116
Point, conjugate, multiplicity 116
Point, critical 17 277
Point, cut 267
Point, focal 230
Polar coordinates 122 (Ex.)
Pole 151 154
Principal directions 129
Projective plane, embedding in of 32 (Ex.)
Projective plane, nonorientability of 32 (Ex.)
Regular surface 16
Relation of Clairaut 78 (Ex.)
Second fundamental form 128
Space forms 164
Space, ball model 177
Space, complex projective 187 (Ex.)
Space, complex projective, curvature of 188
Space, constant curvature of 156
Space, Euclidean 39
Space, hyperbolic 160
Space, hyperbolic, completeness of the 162
Space, hyperbolic, isometries of the 175
Space, hyperbolic, models of 160 177 180
Space, lens 181
Space, real projective 4
Space, real projective, metric on 45
Space, real projective, parametrizations of 4 20
Space, symmetric (locally) 105 (Ex.)
Space, symmetric (locally), geometric characterization of 190 (Ex.)
Space, symmetric (locally), Jacobi Melds on a 121 (Ex.)
Space, tangent 9
Sphere theorem 265
Stereographic projection 19
Stereographic projection, of hyperbolic space 184 (Ex.)
Strongly convex 74
Submanifold 11 see
Submanifold, minimal 133
Submanifold, totally geodesic 132
Submanifold, umbilic 182 (Ex.)
Submanifold, umbilic, in euclidean space 184 (Ex.)
Submanifold, umbilic, in hyperbolic space 184 (Ex.)
Submersion 185 (Ex.)
Submersion, connection of a 186
Submersion, curvature of a 187
Submersion, horizontal vector of a 186 (Ex.)
Submersion, Riemannian 185 (Ex.)
Submersion, vertical vector of a 185 (Ex.)
Support of a function 30
System of coordinates 2
Tangent vector 7
Tangent vector, to a curve 6
Tensor 100
Tensor, covariant derivative of a 102
Tensor, curvature 101
Tensor, metric 101 103
Tensor, metric, on a Riemannian manifold 100
Tensor, Ricci 98
Theorem, Morse Index 243
Theorem, of Bonnet — Myers 201 208 250
Theorem, of Cartan, on closed geodesies 255
Theorem, of Cartan, on determination of the metric 157
Theorem, of E. Hopf 85 (Ex.)
Theorem, of Gauss 130
Theorem, of Hadamard 149 237
Theorem, of Hopf and Rinow 146
Theorem, of Jacobi 248
Theorem, of Liouville, on conformal transformations 170
Theorem, of Liouville, on the geodesic flow 86 (Ex.)
Theorem, of Preissman 260
Theorem, of Rauch 215
Theorem, of Rauch, on focal points 234
Theorem, of Schur 106 (Ex.)
Theorem, of Sturm 238 (Ex.) 240
Theorem, of Synge 206
Theorem, of Synge — Weinstein 203
Theorem, sphere 265
Trajectory of a vector field 28
Value, critical 17
Value, regular 17
Variation 192
Variation, proper 192
Vector field 25
Vector field, along a curve 43
Vector field, along a surface 68
Vector field, as a derivation 28
Vector field, bracket of 27
Vector field, horizontal lift of a 186 (Ex.)
Vector field, trajectory 28
Vertex of a curve 67
Volume, element 45 84 86
Volume, form 45
Volume, in a Riemannian manifold 44
Реклама