| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Agarwal R.P. — Difference Equations and Inequalities. Theory, Methods and Applications. | 39 |
| Dwight H.R. — Tables of Integrals and Other Mathematical Data | 850.1 |
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 219, 262, 463 |
| Bartle R.G. — The Elements of Real Analysis | 350, 371 |
| Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 130 |
| Bell W.W. — Special Functions for scientists and engineers | 23 |
| Koepf W. — Hypergeometric Summation. An algorithmic approach to summation and special function identities. | 4, 196 |
| Abramowitz M., Stegun I. (eds.) — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table | 255, 263 |
| Bruce C.Berndt — Ramanujan's Notebooks (part 2) | 5, 96, 172—175 |
| Apostol T.M. — Calculus (vol 1) | 419, 421 (Exercise 19) |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 276 |
| Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 1, 101, 102 |
| Bruce C.Berndt — Ramanujan's Notebooks (part 5) | 50 — 66 |
| Andrews G., Askey R., Roy R. — Special Functions | 3, 6, 23, 44 |
| Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 153, 186, 412, 655 |
| Ross S.M. — Introduction to probability models | 34 |
| Rudin W. — Principles of Mathematical Analysis | 192 |
| Bruce C.Berndt — Ramanujan's Notebooks (part 4) | 305—306, 322, 330, 334—342, 374—377, |
| Apostol T.M. — Calculus (vol 2) | 184, 413, 620 (Exercises 7,9) |
| Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 925, 1068, 1076 |
| Shorack G.R. — Probability for statisticians | 546 |
| Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in FORTRAN77 | 206ff., 1085 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 150.D 174, App. A, Table 17.I |
| Abramowitz M., Stegun I. — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | 255, 263 |
| Bird R.B., Lightfoot E.N., Stewart W.E. — Transport Phenomena | 853 |
| Devroye L. — Generation of non-uniform random variates | 490, 491, 493 |
| Bruce C.Berndt — Ramanujan's Notebooks (part 1) | 13, 137, 154, 175—178, 183—187, 194—195 |
| Apostol T.M. — Introduction to Analytic Number Theory | 250 |
| Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 210—214, 468, 513 |
| Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 967 |
| Fishman G.S. — Monte Carlo: concepts, algorithms, and applications | 55 |
| Gustafsson F. — Adaptive filtering and change detection | 85, 401 |
| Hamilton W.R. — The collected mathematical papers. Volume 2: dynamics | 508 |
| Hayek S.I. — Advanced mathematical methods in science and engineering | 544, 599 |
| Ben-Israel A., Greville T. — Generalized inverses: Theory and applications | 286 |
| Latrve D.R., Kreider D.L., Proctor T.G. — Hp-48G/Gx Investigations in Mathematics | 327 |
| Dwork B. — Lectures on P-Adic Differential Equations | 242, 246 |
| Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 184 |
| Husemoeller D. — Elliptic curves | 179 |
| Lee M.H. — Mixed Automorphic Forms, Torus Bundles, and Jacobi Forms | 24, 100 |
| Ribenboim P. — My numbers, my friends: popular lectures on number theory | 282 |
| Peebles P.Z. — Probability, random variables, and random signal principles | 85, 330, 331 |
| Shampine L.F., Allen R.C., Pruess Jr.S. — Fundamentals of numerical computing | 13—14 |
| Roberts A.W., Varberg D.E. — Convex Functions | 21 |
| Olver F.W.J. — Asymptotics and Special Functions | 31 (see also “Incomplete, Gamma functions, Psi function”) |
| Henrici P. — Applied and Computational Complex Analysis (Vol. 2) | 24, 137, 247, 365, 377, 429, 430, 624 |
| Henrici P. — Applied and Computational Complex Analysis (Vol. 3) | 38 |
| Kevorkian J., Cole J.D. — Multiple Scale and Singular Perturbation Methods | 62 |
| Axler S., Bourdon p., Ramey W. — Harmonic function theory | 245 |
| Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 364 |
| Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 925, 1068, 1076 |
| De Branges L. — Hilbert Spaces of Entire Functions | 18, 198, 207, 211, 218, 237, 262, 295, 297, 301, 306, 313 |
| Conway J.B. — Functions of One Complex Variable | 176 |
| Webster R. — Convexity | 206, 208 |
| Hormander L. — Notions of Convexity | 20 |
| Liboff R. — Kinetic Theory | 543 |
| Nayfeh A.H., Mook D.T. — Nonlinear Oscillations | 92, 354 |
| Ahlfors L.V. — Complex analysis | 196—205 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 58 |
| Polya G., Latta G. — Complex Variables | 235 |
| Stauffer D., Aharony A. — Introduction To Percolation Theory | 36 |
| Bellman R. — A brief introduction to theta functions | 30 |
| Chaudhry M.A., Zubair S.M. — On a Class of Incomplete Gamma Functions with Applications | 1—4 |
| Lorentzen L., Waadeland — Continued fractions and applications | 199, 221 |
| Edwards H. — Advanced Calculus: A Differential Forms Approach | 423 (Ex. 10(n)) |
| Ferguson T.S. — Mathematical Statistics. A Decision Theoretic Approach | 101 |
| Mahmoud H.M. — Evolution of random search trees | 16 |
| Hamilton J.D. — Time Series Analysis | 355 |
| Honerkamp J. — Statistical Physics | 34, 54 |
| Small Ch.G. — Functional Equations and how to Solve Them | 75, 107 |
| Kay S.M. — Intuitive Probability and Random Processes using MATLAB | 300 |
| Jones W.B., Thron W.J. — Continued fractions: Analytic theory and applications | 348—350 |
| Diamond F., Shurman J. — First Course in Modular Forms | 120 |
| Kurtz D.S., Swartz C.W. — Theories of Integration | 51 |
| Balakrishnan N., Nevzorov V.B. — A Primer on Statistical Distributions | 75, 179, 195, 204, 270 |
| Borwein P, Erdelyi T — Polynomials and polynomial inequalities | 63 |
| Chipot M., Quittner P. — Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3 | 601 |
| Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 12, 13, 15, 22, 26, 111, 124 |
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 193 |
| Steele J.M. — Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities | 165 |
| Kanatani K. — Statistical Optimization for Geometric Computation: Theory and Practice | 73 |
| Sokolnikoff I.S. — Advanced Calculus | 245—254, 398 |
| Murty M.R. — Problems in Analytic Number Theory | 91 |
| Everest G., Ward T. — An Introduction to Number Theory | 183, 197, 206 |
| Knopfmacher J. — Abstract Analytic Number Theory | 227 |
| Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 76 |
| Strauss W.A. — Partial Differential Equations: An Introduction | 268, 338, 395—396 |
| Khovanskii A.N, — The application of continued fractions and their generalizations to problems in approximation theory | 142 |
| Boros G., Moll V. — Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals | see Advanced functions, Gamma |
| Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics) | 163 |
| Olds C.D., Davidoff G. — Geometry of Numbers | 105, I2l |
| Lawless J.F. — Statistical Models and Methods for Lifetime Data | 40, 541 |
| Lange K. — Optimization | 104 |
| Sloane N.J.A. — Handbook of Integer Sequences | 708, 1446, 2091, 2347 |
| Shankar R. — Basic Training In Mathematics | 43 |
| Ross S. — A First Course in Probability | 222—223, 227, 239 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 423—424 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 620 |
| Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | 67, 117, 128, 197, 287—288 |
| Borwein J., Bailey D. — Mathematics by Experiment: Plausible Reasoning in the 21st Century | 192, 192—195 |
| Finch S.R. — Mathematical constants | 18, 33, 40, 53, 123, 136, 169, 195, 212, 262, 277, 280, 322, 413, 420, 456, 474, 540 |
| Wyld H.W. — Mathematical Methods for Physics | 128—130, 440—442, 508—512, 516—519 |
| Murty M.R., Esmonde J. — Problems in algebraic number theory | 147 |
| Rainville E.D. — Special Functions | 8—32, 127 |
| Khuri A.I. — Advanced calculus with applications in statistics | 246, 532 |
| Johnston R. — Numerical methods, a software approach | 199, 211 |
| Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 750 |
| Stone C.J.D. — Course in Probability and Statistics | 134—135 |
| Lad F. — Operational Subjective Statistical Methods. A Mathematical, Philosophical, and Historical Introduction | 292—293 |
| Spivak M. — Calculus | 369, 411 |
| Gasper G., Rahman M. — Basic hypergeometric series | 2, 16, 17 |
| Kadanoff L.P. — Statistical physics | 38 |
| Lang S.A. — Undergraduate Analysis | 346 |
| Purdom R.W., Brown C.A. — The analysis of algorithms | 96—98 |
| Neukrich J. — Algebraic number theory | 421 |
| Griffits D.J. — Introduction to quantum mechanics | 216 |
| Gonnet G.H., Baeza-Yates R. — Handbook of algorithms and data structures | 297, 300 |
| Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 262 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 423—424 |
| Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 86—89 |
| Stauffer D., Aharony A. — Introduction to percolation theory | 36 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 150.D, 174, App. A, Table 17.I |
| Galindo A., Pascual P. — Quantum Mechanics Two | I 311 |
| Collins G.W. — Fundamentals of Stellar Astrophysics | 375 |
| Fundamentals of engineering. Supplied-reference handbook | 10 |
| DeWitt B.S. — The global approach to quantum field theory (Vol. 1) | 1018 |
| Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 43 |
| Takezawa K. — Introduction to Nonparametric Regression | 172 |
| National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | [115], 446—448 |
| Mahmoud H.M. — Sorting: a distribution theory | 60, 266 |
| Kuo W., Zuo M.J. — Optimal Reliability Modeling: Principles and Applications | 28, 38, 505 |
| Kuznetsov N., Mazya V., Vainberq B. — Linear Water Waves: A Mathematical Approach | 292 |
| Staffans O. — Well-Posed Linear Systems | xvi, 162, 319 |
| Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 149p, 162 |
| Guggenheimer H.W. — Applicable Geometry | 118 |
| Greenberg M.D. — Advanced engineering mathematics | 223 |
| Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 419, 421; (Exercise 19) |
| Gong S., Gong Y. — Concise Complex Analysis | 207 |
| Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 283 |
| Sheil-Small T. — Complex polynomials | 239 |
| Greiner W., Schramm S., Stein E. — Quantum chromodynamics | 192, 194 |
| Borwein J.M., Borwein P.B. — Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity | 24, 27, 28, 87, 332, 336 |
| Phillips G.M. — Interpolation and Approximation by Polynomials | 66 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 423—424 |
| Ayoub R. — An Introduction to the Analytic Theory of Numbers | 353, 361, 364 |
| Erdelyi A. — Higher Transcendental Functions, Vol. 1 | 1 (see also “Incomplete gamma function”) |
| Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applications | 22, 258, 369—380, 387—389 |
| Klerk de E. — Aspects of Semidefinite Programming | 183 |
| Weir A.J. — Lebesgue Integration and Measure | 111 |
| Bergeron F., Labelle G., Leroux P. — Combinatorial Species and Tree-like Structures | 266 |
| Feller W. — Introduction to probability theory and its applications (volume 1) | 66 |
| Bernardo J.M., Smith A.F.M. — Bayesian Theory | 116 |
| Pap E. — Complex Analysis Through Examples And Exercises | 256 |
| Knuth D.E. — The art of computer programming (Vol. 1. Fundamental algorithms) | 48—51, 71, 78, 112, 115—116 |
| Strichartz R.S. — The way of analysis | 348 |
| Wang Z.X., Guo D.R., Xia X.J. — Special Functions | 93 |
| Atkinson D., Johnson P.W. — Exercises in Quantum Field Theory: A Self-Contained Book of Questions and Answers | 171 |
| Meeker W.Q., Escobar L. — Statistical Methods for Reliability Data | 85 |
| Coxeter H.S.M. — Regular Polytopes | 125 |
| MacRobert T.M. — Spherical Harmonics an Elementary Treatise on Harmonic Functions with Applications | 82, 340, 349 |
| Galindo A., Pascual P. — Quantum Mechanics One | 311 |
| Arnold B.C., Balakrishnan N., Nagaraja H.N. — A First Course in Order statistics | 15 |
| Natterer F. — The Mathematics of Computerized Tomography (Classics in Applied Mathematics) | 193 |
| van der Put M. — Galois theory of difference equations | 130 |
| Cowan B. — Topics In Statistical Mechanics | 91, 103, 129 |
| Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 464 |
| Young R.M. — An Introduction to Nonharmonic Fourier Series | 76 |
| Cercignani C. — Theory and Application of the Boltzman Equation | 38, 183, 228 |
| Baglivo J.A. — Mathematica Laboratories for Mathematical Statistics: Emphasizing Simulation and Computer Intensive Methods | 33 |
| Bak J., Newman D.J. — Complex Analysis | 235 |
| Dickson L.E. — History of the Theory of Numbers, Volume ll: Diophantine Analysis | 95, 97, 721, 725 |
| Pope S.B. — Turbulent Flows | 50, 515 |
| Duda R.O., Hart P.E., Stork D.G. — Pattern Classification | see Function, gamma |
| Silverman J.H. — Advanced Topics in the Arithmetic of Elliptic Curves | 83, 176 |
| Betten J. — Creep Mechanics | 199, 283 |
| Billingsley P. — Probability and Measure | 18.22 |
| Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems | 117—119, 170 |
| Miller W. — Symmetry Groups and Their Applications | 204, 246, 422 |
| Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 239, 242, 246 |
| Pomraning G.C. — The equations of radiation hydrodynamics | 200 |
| Pipes L.A. — Applied Mathemattics for Engineers and Physicists | 300 |
| D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 360 |
| Zong Ch. — Sphere packings | 2 |
| Hazewinkel M. — Handbook of Algebra (part 2) | 722 |
| Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 579—580 |
| Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 1, 101, 102 |
| Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 135 |
| Kleinert H., Schulte-Frohlinde — Critical Properties of (Phi)P4-Theories | 102 |
| Wong K. — Asymptotic Approximations of Integrals | 60 (see also “Incomplete Gamma function”) |
| Schulman L.S. — Techniques and applications of path integration | 75 |
| Antia H.M. — Numerical Methods for Scientists and Engineers | 16, 242, 452 |
| Greiner W., Reinhardt J. — Quantum electrodynamics | 433 |
| Neukirch J. — Class Field Theory | 116 |
| Faraut J., Korányi A. — Analysis on symmetric cones | 123 |
| Krantz S.G. — Handbook of Real Variables | 132 |
| Economou E.N. — Green's Functions in Quantum Physics | 67, 207 |
| Kreyszig E. — Advanced engineering mathematics | 192, A95 |
| Edwards H.M. — Riemann's Zeta Function | Factorial function |
| Hormander L. — The analysis of linear partial differential operators I | 73, 86 |
| Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 202 |
| Alexanderson G.L. (ed.), Klosinski L.F. (ed.), Larson L.C. (ed.) — William Lowell Putnam Mathematical Competition: Problems and Solutions 1965-1984 | 1984, A—5 |
| Bertlmann R.A. — Anomalies in Quantum Field Theory | 278 |
| Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 140, 393 |
| Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 48, 100 |
| Miller W. — Lie theory and special functions | 324 |
| Luke Y.L. — The special functions and their approximations (volume 1) | see Chapter II (8—37) |
| Emanuel Parzen — Stochastic processes (Classics in Applied Mathematics) | 62 |
| Lemmermeyer F. — Reciprocity Laws: From Euler to Eisenstein | 139, 240 |
| Luke Y.L. — Mathematical Functions and Their Approximations | 1, 23 (see also Incomplete gamma function) |
| Grasman J. — Asymptotic methods for relaxation oscillations and applications | 84, 188 |
| Roe B.P. — Probability and Statistics in Experimental Physics | 51 |
| Trefethen L.N., Bau D. — Numerical Linear Algebra | 85 |
| Pathria P.K. — Statistical Mechanics | 497—501 |
| Balakrishnan N. (ed.), Rao C.R. (ed.) — Order Statistics - Theory and Methods | 194, 205 |
| Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 75, 93 |
| Bayin S.S. — Mathematical Methods in Science and Engineering | 360, 462 |
| Tsang L., Kong J.A., Ding K.- H. — Scattering of electromagnetic waves (Vol 1. Theories and applications) | 134 |
| Kao E. — Introduction to Stochastic Processes | 21 |
| Spiegel M.R. — Schaum's outline of theory and problems of probability and statistics | 115, 341, 342 |
| Rao M.M., Swift R.J. — Probability Theory With Applications | 502 |
| Fiske T.S. — Functions of a complex variable | 71 |
| Landau L.D., Lifshitz E.M. — The classical theory of fields | 221 |
| Hamming R.W. — Coding and Information Theory | 173 |
| van Dijk N. — Handbook of Statistics 16: Order Statistics: Theory & Methods | 194, 205 |
| C. Caratheodory, F. Steinhardt — Theory of Functions of a Complex Variable. 2 Volumes | 286 |
| Rektorys K. — Survey of applicable mathematics | 584 |
| Simmons G.F. — Differential Equations with Applications and Historical Notes | 234 |
| Curle N., Davies H. — Modern Fluid Dynamics. Compressible flow | 167 |
| Balakrishnan N., Rao C.R. — Handbook of Statistics (Vol. 17): Order Statistics: Applications | 64, 131, 287, 388, 389 |
| Macrobert T.M. — Functions of a complex variable | 67, 75, 109, 139, 141 |
| Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in Fortran 90 | 206ff., 1085 |
| L Sirovich — Techniques of Asymptotic Analysis With 23 Illustrations | 25 |
| Stavroulakis I.P., Tersian S.A. — Partial Differential Equations: An Introduction with Mathematica and Maple | 220 |
| Rice J.R. — The approximation of functions. Nonlinear and multivariate theory | 103 |
| Marks R.J.II. — The Joy of Fourier | 23, 38, 39, 163, 737 |
| Bird G.A. — Molecular gas dynamics and the direct simulation of gas flows | 94, 112, 126, 417 |
| Jordan C. — Calculus of Finite Differences | 53—56 |
| Goursat E. — Functions of a complex variable. Part 1 of volume II | 100, 47, 229, 96 |
| Gallavotti G. — Statistical Mechanics | 16, 70 |
| Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 331, 342 |
| Barnett S.M., Radmore P.M. — Methods in Theoretical Quantum Optics | 228—229 |
| Dienes P. — The Taylor series: An introduction to the theory of functions of a complex variable | 113 |
| Nehari Z. — Conformal mapping | 109 |
| Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 132 |
| Aliprantis C. — Principles of real analysis | 200 |
| Goldstein L.J. — Analytic Number Theory | 258 |
| Liu C.L. — Introduction to combinatorial mathematics | 4n. |
| Coxeter H. — Regular polytopes | 125 |
| DeGroot M.H. — Optimal statistical decisions | 39 |
| Papoulis A. — The Fourier Integral and Its Applications | 171, 220 |
| Lindsay R.B. — Mechanical Radiation | 94 |
| Lena P., Lebrun F. — Observational Astrophysics (Astronomy and Astrophysics Library Series) | 441 |
| Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 308 |
| Gelbaum B.R. — Problems in Real and Complex Analysis | 10.3. 114, 11.2. 119 |
| Esposito G. — Dirac Operators and Spectral Geometry | 81 |
| Churchill R.V. — Operational mathematics | 11 |
| Reif F. — Fundamentals of statistical and thermal physics | 608 |
| Grimmett G., Welsh D. — Probability: An Introduction | 64 |
| McQuarrie D.A. — Statistical Mechanics | 12, 32, 247 |
| Davenport H. — Multiplicative number theory | 61, 73 |
| Lang S. — Undergraduate analysis | 346 |
| Kuttler K.L. — Modern Analysis | 214, 376 |
| Kestelman H. — Modern theories of integration | 117, 159, 211 |
| E. G. Phillips, M.A., M.Sc. — Functions of a complex variable with applications | 130 |
| Chavel I. — Eigenvalues in Riemannian geometry | 303 |
| Rektorys K. (ed.) — Survey of Applicable Mathematics | 584 |
| Koepf W. — Hypergeometric summation. An algorithmic approach to summation and special function identities | 4, 196 |
| Wilf H.S., Zeilbercer D., Petkovšek M. — A=B | 42, 43 |
| Ash R. — Basic probability theory | 109, 133 |
| Dunkl C.F., Xu Y. — Orthogonal Polynomials of Several Variables | 1 |
| Coffey W.T., Kalmykov Yu.P., Waldron J.T. — The Langevin equation | 158 |
| Bickel P., Doksum K. — Mathematical statistics | 488 |
| Tenenbaum M., Pollard H. — Ordinary differential equations: an elementary textbook for students of mathematics, engineering, and the sciences | 306—309 |
| Zhang S., Jin J. — Computation of Special Functions | 44—53 |
| Percival D.B., Walden A.T. — Wavelet methods for time series analysis | 257 |
| Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 576 |
| Luke Y.L. — Special Functions and Their Approximations. Volume II | I, 8—37, see also "Incomplete gamma function" |
| Greene D.H., Knuth D.E. — Mathematics for the analysis of algorithms | 78 |
| Greene D.H., Knuth D.E. — Mathematics for the analysis of algorithms | 74, 110, 118 |
| Devroye L. — Non-Uniform Random Variate Generation | 490, 491, 493 |
| Goldsmid J., Drabble H. — Thermal Conduction in Semiconductors | 109 |
| Hildebrand F.B. — Advanced Calculus for Applications | 73 |
| Wong R. — Asymptotic approximations of integrals | 60, see also "Incomplete Gamma function" |
| Jorgenson J., Lang S., Goldfeld D. — Explicit formulas for regularized products and series | 39, 83 |
| De Bruijn N.G. — Asymptotic methods in analysis | 46, 69, 119 |
| Percival D., Walden A. — Spectral Analysis for Physical Applications | 493 |
| Moore F. — Elements of Computer Music | 320 |
| Urbanowicz J., Williams K.S. — Congruences for L-Functions | 11 |
| Jeffreys H. — Methods Of Mathematical Physics | see "Factorial function" |
| Tsang L., Kong J.A. — Scattering of electromagnetic waves (Vol 3. Advanced topics) | 352 |
| Stacey W. — Nuclear reactor physics | 686 |
| Miller W. — Symmetry and Separation of Variables | 88, 265 |
| Allen A. — Probability, statistics, and queueing theory with computer science applications | 137 |
| Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 184, 413, 620, Exercises 7, 9 |
| Klein F. — Elementary Mathematics From an Advanced Standpoint: Arithmetic, Algebra, Analysis | 239 |
| Hamilton J.D. — Time Series Analysis | 355 |
| Mittra R., Lee S.W. — Analytical Techniques in the Theory of Guided Waves | 11 |
| Donoghue Jr.W.F. — Monotone Matrix Functions and Analytic Continuation | 29 |
| Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 546 |
| Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 318—319 |
| Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 342 |
| Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 342 |
| Kuczma M. — Functional equations in a single variable | 26, 66, 105, 127—131, 191—193, 232—236 |
| Miller K.S., Ross B. — An Introduction to the Fractional Calculus and Fractional Differential Equations | 48, 51, 297, 299, 300 |
| Constantinescu F., Magyari E. — Problems in quantum mechanics | 399 |
| Rice J.A. — Mathematical statistics and data analysis | 50 |
| Courant R. — Differential and Integral Calculus, Vol. 1 | 250—251, 418 |
| Mitrinović D.S., Vasić P.M. — Analytic inequalities | 266, 285—289 |
| Dickson L.E. — History of the theory of numbers. Volume 3: quadratic and higher forms | 42, 129, 157—158, 164—165, 170, 243, 245, 251—252 |
| Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 29 |
| Nikolsky S.M. — A Course of Mathematical Analysis (Vol. 2) | 136 |
| Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 70 |
| Cercignani C. — Rarefied Gas Dynamics | 300 |
| Oldham K., Spanier J. — The fractional Calculus: Theory and applications of differentiation and integration to arbitrary order | 14, 16—24, see also "Incomplete gamma functions" |
| Abramowitz M., Stegun I.A. (eds.) — Handbook of mathematical functions (without numerical tables) | 255, 263 |
| Zorich V.A., Cooke R. — Mathematical analysis II | 439—442 |
| Cheney W. — Analysis for Applied Mathematics | 293 |
| Zorich V. — Mathematical Analysis | 439—442 |
| Lang S. — Cyclotomic Fields II (Graduate Texts in Mathematics) | 72, 101 |
| Reichl L.E. — Modern Course in Statistical Physics | 218 |
| Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 579—580 |
| Moiseiwitsch B.L. — Integral Equations | 38 |
| Hogg R.V., Craig A.T. — Introduction to Mathematical Statistics | 131 |
| Kupferschmid M. — Classical FORTRAN: Programming for Engineering and Scientific Applications | see "DGAMMA" |
| Bhatia R. — Matrix Analysis | 319 |
| D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 360 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 86—89 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 86—89 |
| Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 86—89 |
| Honerkamp J. — Statistical physics: an advanced approach with applications | 34, 54 |
| Kline M. — Mathematical thought from ancient to modern times | 423, 424 |
| Brezinski C. — History of Continued Fractions and Padé Approximants | 196 |
| Dennery P., Krzywicki A. — Mathematics for Physicists | 94—98 |
| Daniels R.W. — Introduction to numerical methods and optimization techniques | 125 |
| Brandt S., Dahmen H.D. — Quantum mechanics on the personal computer | 161 |
| Srivastava H.M., Manocha H.L. — A Treatise on Generating Functions | 17, 19 |
| Knuth D.E. — Selected papers on discrete mathematics | 665, 689, 696, 699, 710, 765 |
| Hoel P. — Introduction to Mathematical Statistics | 153 |
| D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 63, 73, 77 |
| Mathai A.M., Saxena R.K. — Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences | 41 |
| Mathai A.M., Saxena R.K. — Generalized Hypergeometric Functions With Applications In Statistics And Physical Sciences | 41 |