Авторизация
Поиск по указателям
Olds C.D., Davidoff G. — Geometry of Numbers
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Geometry of Numbers
Авторы: Olds C.D., Davidoff G.
Аннотация: This book presents a self-contained introduction to the geometry of numbers, beginning with easily understood questions about lattice points on lines, circles, and inside simple polygons in the plane. Little mathematical expertise is required beyond an acquaintance with those objects and with some basic results in geometry.
The reader moves gradually to theorems of Minkowski and others who succeeded him. On the way, he or she will see how this powerful approach gives improved approximations to irrational numbers by rationals, simplifies arguments on ways of representing integers as sums of squares, and provides a natural tool for attacking problems involving dense packings of spheres.
An appendix by Peter Lax gives a lovely geometric proof of the fact that the Gaussian integers form a Euclidean domain, characterizing the Gaussian primes, and proving that unique factorization holds there. In the process, he provides yet another glimpse into the power of a geometric approach to number theoretic problems.
The geometry of numbers originated with the publication of Minkowski's seminal work in 1896 and ultimately established itself as an important field in its own right. By resetting various problems into geometric contexts, it sometimes allows difficult questions in arithmetic or other areas of mathematics to be answered more easily; inevitably, it lends a larger, richer perspective to the topic under investigation. Its principal focus is the study of lattice points, or points in n-dimensional space with integer coordinates-a subject with an abundance of interesting problems and important applications. Advances in the theory have proved highly significant for modern science and technology, yielding new developments in crystallography, superstring theory, and the design of error-detecting and error-correcting codes by which information is stored, compressed for transmission, and received.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2001
Количество страниц: 168
Добавлена в каталог: 05.04.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
45
48 56
56
105 121
46
46
83
Absolute value of a complex number 133
Additive structure of plane 133
Admissible lattice 145
Affine transformation 73—74
Approximating irrationals 105—107
Arithmetic-geometric mean inequality 80
Associate primes 135
Axes, major and minor 100
Axes, rotating 113
Bertrand, J. 152
Binary quadratic form 97 104
Blichfeldt, Hans Frederik, life of 153—154
Blichfeldt, Hans Frederik, life of, a packing theorem 149
Blichfeldt, Hans Frederik, life of, on approximating irrationals 124—129 131
Blichfeldt, Hans Frederik, life of, on quadratic minima 105 121
Blichfeldt, Hans Frederik, life of, proof of Minkowski’s Fundamental Theorem 72—73 117
Blichfeldt’s Theorem 113—116 119—121
Blichfeldt’s Theorem, generalization of 116
Bo1yai, Janos 141
Bolzano — Weierstrass theorem 15
Boundary of a polygon 36
Center of symmetry 66
Checkerboard lattice 148—149
Cluster points 15—16
Common divisor 55
complex numbers 54 133—134
Congruence classes 140—141
Congruence notation 56 108 140—141
Congruent numbers 140
Conjugate of z 134
Consecutive sides 35
Contracting an M-set 66
Convex point set 65
Covering, of a lattice point 114
Critical determinant 146
Critical lattice 146
Davenport, Harold 108
de M’eziriac, Claude Bachet 107
Degree of approximation 105
Determinant of a lattice 73—74 85
Determinant of a linear transformation 85
Determinant, critical 146
Difference points 116
Dilating an M-set 67
Diophantine approximations, simultaneous 82
Diophantine equation 28 54
Diophantine inequalities 63
Diophantus 51 54 107
Discriminant d 98
Doubly connected polygon 37
Einstein, Albert 152
Eisenstein, F. 152
ellipse 23 100—101
Equivalent lattices 89 91—92 95
Equivalent primes 135
Euclid’s algorithm 10 136
Euler, Leonhard 97 107
Euler, Leonhard, on representations of n 52 54—56
Expanding an M-set 66
Exterior of a polygon 36
Face-centered cubic (fee) lattice 148
Fermat, Pierre de 52 54 107
Fibonacci sequence 32
Fibonacci, Leonardo 53
Field 140
Four-dimensional sphere 109
Fractional part of x 26
Frederick the Great, Prussian Academy of 107
Fundamental lattice L 3—4 88
Fundamental parallelogram 89—90
Fundamental parallelopiped 74
Fundamental point-lattice Lambda 3—4 18 23 88 90
Fundamental Theorem of Arithmetic 8 135
Fundamental Theorem of Complex Arithmetic 136 138—139
Gamma function 105 I2l
Gauss, Carl Friedrich 152
Gauss, Carl Friedrich, on lattice points in circles 4 45—46 48 57—58
Gauss, Carl Friedrich, on packing 148
Gauss, Carl Friedrich, on quadratic forms 97 105
Gaussian integers 133—134
Gaussian integers, factorization of 134—135
Gaussian integers, unique factorization of 138—139
Gaussian primes 139—134
General affine transformation 73—74
General lattice 88
Geometry of numbers 3 63 75 85 113
Girard, Albert 52
Greatest common divisor 5 7
Greatest integer function 14 25—28
Harriot, Thomas 148
Hermite, Charles 63 105 108 123 152
Hexagon, regular 146
Hilbert, David 151
Hurwitz, Adolf 151
Infimum 146
Integers, divisibility property 7
Integers, expressing, in standard form 52
Integers, gaussian 133—134
Integers, Gaussian, factorization of 134—135
Integers, Gaussian, unique factorization of 138—139
Integers, relatively prime 5 95
Integral part of x 25
Integral solutions 28—31
Intercepts 30
Interior of a polygon 36
Inverse transformation 86—87
Irrational numbers 5
Irrational numbers, approximating 80 105 123—131
Jacobi, Carl Gustav Jacob 57 58—59 63
Jordan, Camille 152
Kepler conjecture 148
Kepler.Johannes 148
Kirchhoff.R. 151
Korkine.A. 101 104 105 149
Kronecker, Leopold 151
Kummer, E. 151
Lagrange, Joseph Louis 97 107
Lagrange’s Theorem 107—110
Lattice path 32
Lattice point 3—4 88
Lattice point, covering property 38 114
Lattice point, covering theorem 38
Lattice point, visible 95—96
Lattice square 72
Lattice systems 3 4—10
Lattice, admissible 145
Lattice, checkerboard 148—149
Lattice, critical 146
Lattice, face-centered cubic (fcc) 148
Lattice, general 88
Lattices, equivalent 89 91—92 95
Lcgendre, Adrien Marie 56 97
Least common multiple 8
Lie, Sophus 153
Linear transformation 85 87
Liouville.Joseph 58
Liouville’s identity 58
Lower bound of |f(x, y)\ 98
M-set 65—67 113
Mersenne.Marin 54
Minimum of |f(x, y)| 98 104
Minkowski Theorem, A (for approximating irrationals) 123—129
Minkowski, Hermann 151—153
Minkowski, Hermann, his geometric point of view 3 63—64 75 101 109 113
Minkowski, Hermann, on quadratic minima 105
Minkowski’s First Theorem 76—80
Minkowski’s fundamental theorem 67
Minkowski’s Fundamental Theorem, applications of 75—76 83—84 98 100—101 113 125
Minkowski’s Fundamental Theorem, in y-space 74
Minkowski’s Fundamental Theorem, proofs of 67—73 117—119
Minkowski’s General Theorem 73 109 131
Minkowski’s Second Theorem 79—81
Minkowski’s Third Theorem 82
Mitchell, H.L. III 46
Multiplicative inverses 134
Multiplicative structure of the plane 133
n! 27
N(n) 45
Niven.Ivan 42
Nontrivial factorization 135
Numbers, complex 54 133—134
Numbers, congruent 140
Numbers, irrational 5
Numbers, rational 5 8
Numbers, real 5
Packing of circles 146—147
Packing of circles, of lattices 145—146
Packing of circles, of spheres 145 147—149
Parallel displacement 113
Parallelogram, fundamental 89—90
Parallelogram, primitive 89—90
Parallelopiped.fundamental 74
Path of maximum width 17—20
Path of width d 18
Path, lattice point-free 17—23
Pick.Georg 36
Pick’s Theorem 36
Plane, structure of the 133
Point-lattice, construction of 88—89
Point-lattice, transformation of 91—95
Point-lattices, equivalent 89
Points, difference 116
POLYGONS 35—36
Polygons, doubly connected 37
Positive definite quadratic form 98 102 104
Prime Gaussian integer 135
Primitive parallelogram 89—90
prism 124
Pythagorean Theorem 133 137
Quadratic form, binary 97 104
Quadratic form, positive definite 98 102 104
Quadratic representation 97—98
Quadratic residues 108
Raleigh, Sir Walter 148
Rational numbers 5 8
Rational numbers, approximating irrationals by 105—107
Real numbers 5
Relatively prime Gaussian integers 135
Relatively prime integers 5—6 95
Representation of an integer n 48—53 110;
Representation, quadratic 97—98
Representations of prime numbers 54—56
Rhombus 37
Ring 134
Rotating axes 113
Sides of a polygon 35
Simple polygon 35
Simultaneous Diophantine approximations 82
Slope formula 11
Slope, irrational 5 10—17
Slope, rational 5 6—10
Smith, H.J.S. 152
Sphere packing 145 147—149
Sphere, four-dimensional 109
Standard form for integers 52
Steinhaus, Hugo 36
Symmetry about the origin 22 64
Symmetry, center of 66
T(n) 50
Tchebychev, P.L. 123 129
Thue, Alex 54
Transformation, affine 73
Transformation, inverse 86
Transformation, linear 85—87 90—95
Transformation, point-lattice 90—95
translating 113
Translation of an M-set 68
Unique factorization theorem 52
Unit area 20 95
Unit square 72 90
Units of a ring 134
Vectors 74 89
Vertices 35
Visible points 95—96
Voigt, W. 151
Volume of a four-dimensional sphere 109
von Helmholtz, H.L.E 151
Weber, H. 151
Weierstrass, Karl 151
Wilson’s Theorem 140
y-space 74
Zolotareff.E.I. 102 104 105 149
Zuckerman, Herbert 42
[x] 14 25—28
Реклама