| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | L Sirovich — Techniques of Asymptotic Analysis With 23 Illustrations |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | | Airy’s equations      127 191 289 293 Airy’s functions      126 174
 Airy’s integrals      126 134 171 174
 Airy’s integrals, relation to transition points      293
 Airy’s integrals, Stoke’s lines of      133 134
 Analytic continuations      3 68 129
 Analytic continuations, of functions defined by an integral      38 39
 Analytic continuations, of Laplace transforms      69
 Asymptotic developments      4 7
 Asymptotic developments, error estimates      25 60
 Asymptotic developments, extended sense      10 11
 Asymptotic developments, general      8
 Asymptotic developments, in the sense of Poincare      9
 Asymptotic developments, uniqueness      10 12 13
 Asymptotic expansions      11 24 26
 Asymptotic expansions, of Airy’s integrals      132 133 288 293
 Asymptotic expansions, of Bessel functions      126 288
 Asymptotic expansions, of Bromwich integrals      182 186
 Asymptotic expansions, of Fourier integrals      74 181
 Asymptotic expansions, of Laplace integrals      66 71 72 78 274
 Asymptotic integration      17 19
 Asymptotic power series      2
 Asymptotic power series, derivative of      18 21
 Asymptotic power series, uniqueness      12
 Asymptotic sequences      7
 Bellman, R.      300
 Bessel functions      9 122 126 170
 Bessel functions, asymptotic expansions of      126
 Bessel functions, reduction to Airy’s function      171
 Bessel’s equations      287
 Biccati’s equation      190
 Bleistein, N., l      40 170 171
 Borel sum      35
 Bromwich integral      182 186
 Bromwich path      183
 Carrier, G.      300
 Cauchy integral formula      23 210
 Cauchy sequence      207
 Cayley — Hamilton theorem      208
 Chako, N.      140
 Characteristic polynomial of a matrix      209
 Chester      171 173
 Circuit relation      230
 Classical adjoint of a matrix      193 209
 Coddington, E.      188 300
 Cofactor matrix      193
 Cole, J.      300
 Connection formulas for transition points      294 298
 Convolution integrals      157
 Copson, E. T.      300
 Critical points      88 93 137 147
 de Bruijn, N.      300
 Derivatives of APS      18 21
 Dieudonne, J.      10 44 300
 Dispersive wave      102
 Dominant solution      270 295
 Dunford — Taylor integral      210 217 235 238
 EDGE      270
 Eigenvalues      201
 Eigenvalues, degenerate      204 265
 Eigenvalues, multiplicity of      202 225 235 242
 Eigenvectors      201
 Eigenvectors, generalized      239 242 244 246
 Erdelyi, A.      10 76 79 300
 Error estimate of AD      25 60
 Error functions, complementary      73 161
 Essential singularities      3 229 232 258 260
 Euler transformation      29 33
 Euler’s constant      177
 Euler’s method      29
 Existence of solution for ODE      188
 Exponential function of a matrix      215 216
 Focke, J.      137 140
 Fourier integrals      62 71 88 157 163 181
 Fr
  benius, method of      255 Friedman, B.      171 173
 Friedrichs, K.      0 178 300
 Frohman      299
 Fuch’s theorem      232 241 255
 Fuch’s type, equation of      258
 Functions of matrices      207 209 211
 Fundamental matrix solution      196 200 230 269 271
 Fundamental system of solutions      196
 Gamma function      25
 Gauge Functions      8 9 17 18
 Gel’fand, I. M.      139
 Group velocity      102
 Halmos, P.      192
 Hamburger equation      288
 Handelsman, R.      140 178
 Hankel function      73 122
 Heading, J. C.      299
 Heaviside function      168
 Hermitian matrix      1935 203
 Hilbert transform      182
 Huo, Wei-chi C.      104
 Hypergeometric equation      257 258
 Hypergeometric functions      159
 Ince, E. L.      283
 Indefinite integrals, asymptotic evaluation of      14
 Indicial equation      256 257
 Integral representations of Airy’s function      126
 Integral representations of Bessel functions      126
 Integral representations of Gamma functions      25
 Integral representations of Hankel functions      73 122
 
 | Integration by parts      40 164 Irregular singular point      230 234 259 278
 Jeffrys, H.      300
 Jones, D. S.      140
 Jordan canonical form      204
 Keller, J.      299
 Kelvin’s formula      86 87 101 104
 Kelvin’s formula, generalized      100
 Kelvin’s formula, multidimensional integral      136
 Kline, M.      140
 Krook, M.      300
 Landau symbols      5 6 7
 Langer, E.      296
 Laplace integrals      66 71 72 80 88 114 274
 Laplace transforms      62 70 77 80 176 182 184
 Laplace’s formula      80 83 96 164
 Laplace’s method      80 272
 Laurent expansions      286
 Lauwerier, H.      299
 Level curves      106
 Levinson, B.      188 300
 Lew, J.      178
 Lynn, R.      299
 Magnus      122 160 166
 Matrix      192 195 201
 Matrix solutions, fundamental      196 230 269 271
 Matrix, adjoint of      193
 Matrix, canonical forms      204
 Matrix, characteristic polynomials      202 209 214
 Matrix, classical adjoint of      193
 Matrix, cofactor      193
 Matrix, diagonal      202
 Matrix, function of      207 211
 Matrix, hermitian      193 203
 Matrix, inner products      192
 Matrix, Jordan canonical form of      204
 Matrix, minimal polynomials      212
 Matrix, normal      1933 203
 Matrix, norms of      205 206
 Matrix, null space of      194
 Matrix, ranks      194
 Matrix, similarity      203 230
 Matrix, trace      198
 Minimal polynomials      212 214
 Multiplicity of eigenvalues      202 225
 Neutralizers      753 88 93 138 140 142
 Newton’s polygon      280
 Normal matrix      193
 Normal solution      271
 Null space      191
 Oberhettinger, F.      122 160 166
 Olver, F. W. F.      27 296
 Orthogonal transformations      141 144 230
 Parabolic cylinder equation      191
 Parabolic cylinder function      160 161 166
 Pearson, C.      300
 Poincare, H.      13
 Polynomials, characteristic      202 209
 Polynomials, minimal      212
 Ranks of matrices      194
 Recessive Solutions      270
 Regular singular points      230 234 254 283
 Riemann notation      258
 Riemann — Lebesgue theorem      63
 Riemann — Lebesgue theorem, generalized      64
 Ritt’s theorem      36
 Saddle points      105 113 117 126
 Saddle points, coalescing of      171
 Saddle points, formula      105 121 126
 Saddle points, formula for complex large parameter      115
 Saddle points, hills of      113
 Saddle points, valleys of      113 174
 Saddle, monkey      115 171
 Scaler ordinary differential equations      234 254 278 285
 Scaler ordinary differential equations, definition of irregular singular points      278
 Scaler ordinary differential equations, definition of regular singular points      234 254 257 278
 Shanks, D.      35
 Shearing transform      240
 Shilov, G.      139
 Singular points of ODE      226 232
 Singular points of ODE, irregular      230 234 259 278
 Singular points of ODE, regular      230 234 254 257 273 276
 Sirovich, L.      104 162
 Soni, E.      122 160 166
 Stationary phase, method of      86
 Stationary phase, path      106
 Stationary point      87 99 100
 Steepest descent, method of      105
 Steepest descent, path      106 107 108
 Stirling’s formula      84
 Stokes lines      3 60 73 133 134 270 275
 Subdominant solution      270
 Subnormal solution      271
 Taylor’s Theorem      4
 Transition point      292 297 298 299
 Turning point      297
 Uniform asymptotic expansion      164-175 296
 Uniqueness of solution for ODE      188 189
 Ursell      171 173
 van der Corput      75
 Variation of parameter method      200
 Wasow, W.      289 300
 Watson’s lemma      65 66 70
 Wilcox, C. H.      27
 WKB method      126 291 292 296 299
 wronskian      197
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |