|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Luke Y.L. — The special functions and their approximations (volume 1) |
|
|
Ïðåäìåòíûé óêàçàòåëü |
— Function 148
-Function see Chapter V (135—208)
-Function, analytic continuation 148 149 194
-Function, asymptotic expansion, exponential, recurrence formula for coefficients in 200 202 205—208
-Function, asymptotic expansion, large variable 178—180 189—194
-Function, definition 139 142—145
-Function, differential equation and solutions 181 182
-Function, elementary properties 149—152
-Function, expansion of in series of -functions 147 148 152—157 183—189
-Function, expansion of in series of generalized hypergeometric functions 139 142 145—147
-Function, hypergeometric functions and named functions, connection with 225—234
-Function, integral representations 59 143—145 159 164 175 177
-Function, integrals involving, Euler and related transforms 170—177
-Function, integrals involving, Founer transform 166 169
-Function, integrals involving, Laplace and inverse Laplace transforms 166—169
-Function, integrals involving, Mellin and inverse Mellin transforms 157—159
-Function, integrals involving, other transform pairs 177
-Function, integrals involving, product of two -functions 159 166
-Function, multiplication theorems 152—157
-Function, named functions expressed in terms of 225—230
-functions; special cases of Hypergeometric function (generalized), , analytic continuation 149
— Transform 165
— Transform 165
-function see Hypergeometric function (confluent) Whittaker
Airy functions 205 217
Anger function 218
Approximation, best in Chebyshev sense 303 305
Approximation, best in least square sense 270
Approximation, best in mean square sense 268 305
Associated Bessel function 219
Asymptotic expansion see Chapter I 1-7; asymptotic
Asymptotic expansion, definition 2
Asymptotic expansion, elementary properties 3 4
Asymptotic expansion, Watson’s lemma 4 7
Basic series 291
Ber and Bei functions 216
Bernoulli and generalized Bernoulli polynomials, definition and elementary properties 18—22
Bernoulli and generalized Bernoulli polynomials, Fourier series for 23
Bernoulli and generalized Bernoulli polynomials, integrals of 22 23
Bernoulli and generalized Bernoulli polynomials, recurrence formulas 20 22 35
Bernoulli and generalized Bernoulli polynomials, table of 34
Bernoulli and generalized Bernoulli polynomials, table of 20
Bernoulli and generalized Bernoulli polynomials, table of 19
Bernoulli numbers, definition 19
Bernoulli numbers, expansion of cot z, tan z, csc z, and ln cos z in series involving 23
Bernoulli numbers, table of 20
Bessel functions, -functions, connection with 226—233
Bessel functions, associated 219
Bessel functions, asymptotic expansions 204 215
Bessel functions, confluent hypergeometric function, connection with 120 135 213
Bessel functions, definitions, connecting relations, power series 39 40 212 213
Bessel functions, derivatives with respect to order at half an odd integer 216
Bessel functions, difference-differential properties 48 214
Bessel functions, differential equation 120 214
Bessel functions, expansion of exponential function in series of 287
Bessel functions, integrals involving 115 165 177 219 220 287
Bessel functions, Jacobi polynomial, connection with 52
Bessel functions, products 216 228—230 232—234
Bessel functions, Wronskians 214 215
Bessel functions, zeros of 205
Bessel polynomials 274
Beta function, complete 15 16 18
Beta function, incomplete 210
Beta transform 58 59 170—175 286
Binomial coefficient 9 35
Binomial function 38 40 49 209 210
Chebyshev polynomials of first kind see also Jacobi polynomials
Chebyshev polynomials of first kind, approximations in series of (based on orthogonality properties with respect to summation) 308 312
Chebyshev polynomials of first kind, definition and basic properties 273 296 297 300 301
Chebyshev polynomials of first kind, difference-differential properties 297—299 301 302 316 321 324
Chebyshev polynomials of first kind, evaluation of series of, by use of backward recurrence formula 325—329
Chebyshev polynomials of first kind, expansion of in series of 301
Chebyshev polynomials of first kind, expansion of in series of 298
Chebyshev polynomials of first kind, expansion of a in series of 296
Chebyshev polynomials of first kind, expansions in series of (based on orthogonality property with respect to integration), asymptotic estimate of coefficients 293—296
Chebyshev polynomials of first kind, expansions in series of (based on orthogonality property with respect to integration),differential and integral properties 314—325
Chebyshev polynomials of first kind, expansions in series of (based on orthogonality property with respect to integration),evaluation of coefficients 286—293
Chebyshev polynomials of first kind, integrals involving 293—295 299 300—302 316-325
Chebyshev polynomials of first kind, Jacobi polynomial, connection with 273 296
Chebyshev polynomials of first kind, minimax and mean square properties 303—307
Chebyshev polynomials of first kind, orthogonality property with respect to integration 273 299 301
Chebyshev polynomials of first kind, orthogonality property with respect to summation 307 310 311
Chebyshev polynomials of second kind see also Jacobi polynomials
Chebyshev polynomials of second kind, approximations in series of (based on orthogonality properties with respect to summation) 312—314
Chebyshev polynomials of second kind, definition and basic properties 273 296—300
Chebyshev polynomials of second kind, integrals involving 299 300
Chebyshev polynomials of second kind, Jacobi polynomial, connection with 273
Chebyshev polynomials of second kind, orthogonality property with respect to integration 299
Chebyshev polynomials of second kind, orthogonality property with respect to summation 312 313
Chebyshev, best approximation in sense of 303
Christoffel — Darboux formulas 272
Confluence principle and theorems 48—57
Confluent hypergeometric function see Hypergeometric function (confluent)
Cosecant 23 210
Cosine 23 39 210
Cosine integral 135 221—223 227
Cotangent 23
Coulomb wave functions 135 212
Cylinder function 204 213
D operator 24—26
Darboux, method of generating functions 254—259
Delta () operator 24 26
Difference equations, use of in backward direction 317—319 325—329
Dixon’s theorem 103 104
Elliptic integrals 211
Error functions 135 223 224
Euler — Mascheroni constant, y 9
Expansions see also Particular functions evaluation of in
Expansions, difference equation 325—329
Exponential function 38 40 48 209 287 288
Exponential integral 3 7 135 221 222
Fresnel integrals 135 224 227
Gamma function see Chapter II (8—37)
Gamma function, asymptotic expansion, and ln 31—33
Gamma function, asymptotic expansion, ratio of products of gamma functions 33—37
Gamma function, asymptotic expansion, recurrence formula for coefficients in asymptotic expansion for ratio of products of gamma functions 205—208
Gamma function, definite integrals expressed in terms of 15 16 60 61 157 177
Gamma function, definition and elementary properties 8—10
Gamma function, expansion for and ln in series of Chebyshev polynomials of first kind 28 29
Gamma function, integral representations 8 14 18
Gamma function, logarithmic derivative of see Psi-function
Gamma function, multiplication formula 11—12
Gamma function, power series and other expansions 26 31
Gegenbauer polynomial 273 279
H — Transform 165
Hankel functions 135 204 213 215 230 234
Hankel transform 165 287
Hermite polynomials 135 273
Hypergeometric function (confluent), , -function, Whittaker functions see Chapter IV (115—134) Hypergeometric
Hypergeometric function (confluent), , -function, Whittaker functions, -function, connection with 225 226 228 231 234
Hypergeometric function (confluent), , -function, Whittaker functions, asymptotic expansion, large variable 127 128
Hypergeometric function (confluent), , -function, Whittaker functions, confluence principle 48
Hypergeometric function (confluent), , -function, Whittaker functions, contiguous relations 48 118 119 126
Hypergeometric function (confluent), , -function, Whittaker functions, definition 40 47 49
Hypergeometric function (confluent), , -function, Whittaker functions, difference-differential properties 48 117—119 125 126
Hypergeometric function (confluent), , -function, Whittaker functions, differential equation 119 120
Hypergeometric function (confluent), , -function, Whittaker functions, differential equation, solutions, complete 121—124
Hypergeometric function (confluent), , -function, Whittaker functions, differential equation, solutions, degenerate 120 121
Hypergeometric function (confluent), , -function, Whittaker functions, differential equation, solutions, logarithmic 122 123
Hypergeometric function (confluent), , -function, Whittaker functions, differential equation, solutions, ordinary 119
Hypergeometric function (confluent), , -function, Whittaker functions, elementary relations 117 118
Hypergeometric function (confluent), , -function, Whittaker functions, evaluation of certain for special value of argument 113
Hypergeometric function (confluent), , -function, Whittaker functions, expansion in series of Bessel functions 129—133
Hypergeometric function (confluent), , -function, Whittaker functions, expressed as named function 224
| Hypergeometric function (confluent), , -function, Whittaker functions, integral representations 115—117
Hypergeometric function (confluent), , -function, Whittaker functions, Kummer relations 121 124 126
Hypergeometric function (confluent), , -function, Whittaker functions, named functions expressed in terms of 211—213 220—223
Hypergeometric function (confluent), , -function, Whittaker functions, other notations and related functions 134 135
Hypergeometric function (confluent), , -function, Whittaker functions, products 211 228 233 234
Hypergeometric function (confluent), , -function, Whittaker functions, Wronskians 124
Hypergeometric function (Gaussian), see Chapter III (38—114) Hypergeometric function (generalized)
Hypergeometric function (Gaussian), , -function, connection with 139
Hypergeometric function (Gaussian), , analytic continuation 68—71
Hypergeometric function (Gaussian), , asymptotic expansions for large parameters) 235—242
Hypergeometric function (Gaussian), , confluence principle 49
Hypergeometric function (Gaussian), , contiguous relations 47 89
Hypergeometric function (Gaussian), , convergence of series 65 68
Hypergeometric function (Gaussian), , definition 39 41
Hypergeometric function (Gaussian), , difference-differential properties 44—47 88 275 276
Hypergeometric function (Gaussian), , differential equation 64 93
Hypergeometric function (Gaussian), , differential equation, solutions, complete 65 72—84
Hypergeometric function (Gaussian), , differential equation, solutions, degenerate 65 66 69 77 84
Hypergeometric function (Gaussian), , differential equation, solutions, logarithmic 75—84
Hypergeometric function (Gaussian), , differential equation, solutions, ordinary 64 65 67—71
Hypergeometric function (Gaussian), , elementary relations 44—46
Hypergeometric function (Gaussian), , evaluation of, for special values of argument 99—103 114
Hypergeometric function (Gaussian), , expansion in series of ’s 130
Hypergeometric function (Gaussian), , expressed as named function 224
Hypergeometric function (Gaussian), , integral representations 57 58 62 63 89—91
Hypergeometric function (Gaussian), , integrals involving 170 172—174
Hypergeometric function (Gaussian), , Kummer relations 67 68 85—92
Hypergeometric function (Gaussian), , named functions expressed in terms of 209—211
Hypergeometric function (Gaussian), , polynomial 40
Hypergeometric function (Gaussian), , quadratic transformations 92—98
Hypergeometric function (Gaussian), , truncated series 42 109 110
Hypergeometric function (Gaussian), , Wronskians 84
Hypergeometric function (generalized), see Chapters III (38—114) IV V
Hypergeometric function (generalized), , -function, connection with 139 142 145—147 225 230 231
Hypergeometric function (generalized), , asymptotic expansion, exponential, recurrence formula for coefficients in 200 202 205 208
Hypergeometric function (generalized), , asymptotic expansion, large parameter(s) 51 55 56 133 242—266
Hypergeometric function (generalized), , asymptotic expansion, large variable 195—203
Hypergeometric function (generalized), , confluence principle and theorems 49 51 53—56
Hypergeometric function (generalized), , contiguous relations 48
Hypergeometric function (generalized), , convergence of series 43 44
Hypergeometric function (generalized), , definition 41 42 136
Hypergeometric function (generalized), , difference-differential properties 44 48
Hypergeometric function (generalized), , differential equation 136 138 247
Hypergeometric function (generalized), , differential equation, solutions, complete 147 148
Hypergeometric function (generalized), , differential equation, solutions, logarithmic 140—143
Hypergeometric function (generalized), , differential equation, solutions, ordinary 137—139
Hypergeometric function (generalized), , elementary relations 44
Hypergeometric function (generalized), , evaluation of for special values of argument, 99 101 102 114
Hypergeometric function (generalized), , evaluation of for special values of argument, 103—111 113 259
Hypergeometric function (generalized), , evaluation of for special values of argument, 112—114
Hypergeometric function (generalized), , evaluation of for special values of argument, general p 26 113 114 257—259
Hypergeometric function (generalized), , evaluation of certain for special values of argument 113
Hypergeometric function (generalized), , expansion in series of Chebyshev polynomials of first kind 296
Hypergeometric function (generalized), , expansion theorem for large parameter 51 55 56
Hypergeometric function (generalized), , expressed as named function 224 225
Hypergeometric function (generalized), , integral representations 58 63
Hypergeometric function (generalized), , integrals involving 58—62 164 168 169
Hypergeometric function (generalized), , multiplication theorem 155
Hypergeometric function (generalized), , named functions expressed in terms of 209—224
Hypergeometric function (generalized), , nearly poised 103
Hypergeometric function (generalized), , polynomial 42
Hypergeometric function (generalized), , truncated series 42 210
Hypergeometric function (generalized), , well poised 103 104
Incomplete gamma function and related functions 38 40 135 220—224
Incomplete gamma function and related functions Hypergeometric function (confluent), , -function, Whittaker functions, asymptotic expansion, large parameter(s) 129 133 134
Incomplete gamma function Gamma function, analytic continuation 10 11
Integrals see appropriate modifiers such as Bessel functions integrals
Jacobi function 274
Jacobi polynomials, asymptotic expansion for large order 53 54 237 250—259 278 279
Jacobi polynomials, Bessel function, connection with 52
Jacobi polynomials, Chebyshev polynomials Orthogonal polynomials, classical, orthogonal properties of 273
Jacobi polynomials, definition and basic properties 273— 275 280
Jacobi polynomials, difference-differential properties 275 276
Jacobi polynomials, evaluation and estimation of coefficients of given when expanded in series of 286 296
Jacobi polynomials, evaluation and estimation of coefficients of given when expanded in series of, asymptotic estimates of coefficients 293
Jacobi polynomials, evaluation and estimation of coefficients of given when expanded in series of, coefficients as integral transform 286—290
Jacobi polynomials, evaluation and estimation of coefficients of given when expanded in series of, coefficients, when f(x) is defined by Taylor series 290—293
Jacobi polynomials, expansion of in series of 277 284 285 291
Jacobi polynomials, expansion of in series of 285 287
Jacobi polynomials, expansion of functions in series of 283—286 290—293
Jacobi polynomials, extended and generalized, asymptotic expansion for large order 53 54 247—263 281—283
Jacobi polynomials, extended and generalized, definition 247
Jacobi polynomials, extended and generalized, expansion of functions in series of 291
Jacobi polynomials, extended and generalized, generating function 254
Jacobi polynomials, generating functions 254 278
Jacobi polynomials, inequalities 280
Jacobi polynomials, integrals involving 276—277 281 282 286
Jacobi polynomials, orthogonal polynomials, connection with other 273
Jacobi polynomials, orthogonality property 276
Ker and Kei functions 216
Kontorovich — Lebedev transforms 177
Laguerre polynomial, asymptotic expansion for large order 264—265
Laguerre polynomial, confluent hypergeometric function, connection with 135
Laguerre polynomial, definition and orthogonality property 273
Laguerre polynomial, expansion of functions in series of 291 292
Laguerre polynomial, generalized and extended, asymptotic expansion for large order 263—266
Laguerre polynomial, generalized and extended, definition 263
Laguerre polynomial, generalized and extended, expansion of functions in series of 291 292
Laguerre polynomial, Jacobi polynomial, connection with 273
Legendre functions 178 211
Legendre polynomials 273 279
Logarithm 38 40 210
Lommel functions 217 227 234
Mehler transforms 178
Named functions expressed as -functions 225—230
Named functions expressed as -functions, as 's 209—224
Order symbols 1
Orthogonal functions 267—270
Orthogonal polynomials see Chapter VIII (267—329)
Orthogonal polynomials, definition and basic properties 267—272
Parabolic cylinder functions 135 212
Pi (), asymptotic expansion for 35 36
Polynomials see modifiers such as Bessel orthogonal
Psi ()-function or logarithmic derivative of the gamma function, asymptotic expansion 33
Psi ()-function or logarithmic derivative of the gamma function, definition and elementary properties 12 13
Psi ()-function or logarithmic derivative of the gamma function, expansion Psi ()-function or logarithmic derivative of the gamma function, in series of Chebyshev polynomials of the first kind 28 29
Psi ()-function or logarithmic derivative of the gamma function, integral representations 13—15 28
Psi ()-function or logarithmic derivative of the gamma function, power series expansion 26
Recurrence formulas, use of in backward direction 317—319 325—329
Rummer’s formula 57
Rummer’s solutions 67
Saalschtz’s formula 103
Sine 39 210
Sine integral 135 221—223 227
Sine, inverse of 210
Stokes phenomenon 128 199
Struve functions, asymptotic expansion 219
Struve functions, definition 217
Struve functions, difference-differential properties 218
Struve functions, expressed as -function 227 233
Struve functions, integrals involving 165 220
Tangent 23
Tangent, inverse of or arc tan 38 40 210
Ultraspherical polynomial 273 279
Vandermonde’s theorem 99
Watson’s formula 104
Watson’s lemma 4—7
Weber function 218
Whipple’s formula 104
Whittaker functions see also Hypergeometric function confluent
Whittaker functions, definition 134
Whittaker functions, expressed as -function 225 226 228 231 233 234
Wronskians 84 124
Zeta-function (Riemann) 27
|
|
|
Ðåêëàìà |
|
|
|