Авторизация
Поиск по указателям
Ahlfors L.V. — Complex analysis
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Complex analysis
Автор: Ahlfors L.V.
Аннотация: A standard source of information of functions of one complex variable, this text has retained its wide popularity in this field by being consistently rigorous without becoming needlessly concerned with advanced or overspecialized material. Difficult points have been clarified, the book has been reviewed for accuracy, and notations and terminology have been modernized. Chapter 2, Complex Functions, features a brief section on the change of length and area under conformal mapping, and much of Chapter 8, Global-Analytic Functions, has been rewritten in order to introduce readers to the terminology of germs and sheaves while still emphasizing that classical concepts are the backbone of the theory. Chapter 4, Complex Integration, now includes a new and simpler proof of the general form of Cauchy's theorem. There is a short section on the Riemann zeta function, showing the use of residues in a more exciting situation than in the computation of definite integrals.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: second edition
Год издания: 1966
Количество страниц: 317
Добавлена в каталог: 18.05.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
46
-function 264—269
Abel limit theorem 42
Abel power series theorem 39
Absolute convergence 36
Absolute value 6—8
Accessory parameter 229
Accumulation point 53
Addition theorem 43
Algebraic curve 297
Algebraic function 291—297
Algebraic singularity 290
Amplitude 13
Analytic arc 226
Analytic continuation 170 275—290
Analytic function see Function
angle 14 84
Apollonius 84
ARC 68—69
Arc length 104
arc, analytic 226
arc, differentiable 69
arc, opposite 69
Arc, rectifiable 104—105
arc, regular 69
Arc, simple 69
Argument 13 46
Argument principle 151—153
Artin, E. viii 144
Arzela — Ascoli theorem 214
Associative law 4
Asymptotic development 203
Automorphic function 270
Axis, imaginary 12
Axis, real 12
Barrier 242
Basis 258
bernoulli 203
bessel 304
Binomial equation 15—16
Bolzano — Weierstrass theorem 63
Borel 60
Boundary 53
Bounded 56
Bounded variation 105
Branch 277
Branch point 98 287—291
Calculus of residues 147—160
Canonical basis 260
Canonical mapping 243—253
Canonical product 192—196
Canonical region 243
Cantor, G. 64 214
Caratheodory, C. 235
Cauchy estimate 122
Cauchy inequality 10
Cauchy integral formula 118—120
Cauchy integral theorem 109—114 137—147
Cauchy principal value 157
Cauchy sequence 34
Cauchy — Riemann equations 25—26
Cauchy, A. 25
Chain 137—138
Change of parameter 68
Circle of convergence 39
Closed curve 69
Closed, definition 52
Closure 53
Commutative law 4
Compact 59—64
Complement 50
Complex function 21—48
Complex integration 101—172
Component 57
Conformal equivalence 243
Conformal mapping 13—76 221—253
Congruence subgroup 270
Conjugate differential 162
Conjugate harmonic function 25
Conjugate number 6—8
Connected sets 54—59
Connectivity 144—147
Continuation along arc 278—281
Continuation, analytic 275—280
Continuation, analytic, direct 279
Continuous function 64—67
Continuous function, uniformly 66
contour 109
Contraction 35
Convergence, absolute 36
Convergence, circle of 39
Convergence, uniform 37
Convergent sequence 34
Cross ratio 78—80
Curve 68
Curve, Jordan 69
Curve, level 89
Curve, point 69
Curve, unit 284
CYCLE 138
De Moivre 15
Definite integral 101
Deformation 281
Dense 58
Derivative 23 24
Differentiable arc 69
Differential equation 267—269 299—312
Dirichlet's problem 240—243
Discrete 59 257
Discriminant 292
Distributive law 4
Divergent sequence 34
Doubly periodic function 257
Element 50
ellipse 95
Elliptic function 232
Elliptic integral 231
Elliptic modular function 270
Elliptic, definition 86
Empty set 53
Entire function 192 205—210
Equicontinuous 210—211
Essential singularity 129
Euler, L. 44 197
Exact differential 107
Exponential function 43—46
Exterior 53
Fibonacci numbers 182
Field 4
Fixed point 86
Fourier development 256
Fraction, partial 31 185—189
Fresnel integral 205
Function element 275
Function, algebraic 291—297
Function, analytic 24—28 69—76
Function, analytic, complete 276
Function, analytic, global 275
Function, complex 21—48
Function, conjugate harmonic 25—26
Function, continuous 23 64—67
Function, entire 192 205—210
Function, exponential 43—46
Function, Gamma 196—205
Function, Green's 243 249—251
Function, harmonic 25 160—172 233—243
Function, hypergeometric 308
Function, integral 192
Function, inverse 65
Function, regular 127
Function, single-valued 22
Functional relation 277
Functional, definition 167
Functions, subharmonic 237—240
Functions, trigonometric 43—46
Fundamental group 284
Fundamental region 98—99 274
Fundamental sequence 34
Fundamental theorem of algebra 28 122
Gamma function 196—205
Geometric series 38
Germ 277
Global analytic function 275
Goursat, E. 11
Greatest lower bound (g.l.b.) 55
Green's function 243 249—251
Hadamard formula 39
Hadamard, J. 206—210
Harmonic function 25 160—172 233—243
Harmonic measure 244—249
Harnack's principle 235—237
Heine — Borel 60
Holomorphic 21 24
Homeomorphism 65
Homologous, definition 144
Homology basis 146
Homomorphism 46
Homothetic, definition 77
Homotopic 281—287
Hurwitz, A. 176 217
Hyperbola 90 95
Hyperbolic, definition 86
Hypergeometric differential equation 305—309
Hypergeometric function 308
Identity, Lagrange's 9
Image 64 73
Imaginary axis 12
Imaginary part 1
INDEX 114—118
Indicial equation 303
Indirectly conformal 75
inf 55
Infinite product 189—192
infinity 18
Integral domain 4
Integral function 192
Integral, complex 101—104
Integral, definite 101
Integration 101—172
Interior 53
Intersection 50
interval 55
Into, definition 64
Inverse function 65
Inverse image 65
inversion 77
Involutory transformation 7
Isolated point 53
Isolated singularity 124
Isomorphism 5
Jacobian 25 75
Jensen's formula 205—206
Jordan arc 69
Jordan curve 69
Jordan curve theorem 118
Kernel 46
Koebe, P. 222
Lacunary value 297
Lagrange's identity 9
Laplace equation 25 160
Laurent series 182—184
Least upper bound (l.u.b.) 55
Legendre polynomial 182
Legendre relation 266
Length 104
Level curve 89
Limes inferior 34
Limes superior 34
LIMIT 22—24
Limit point 62
Lindelof, E. viii 97 199
Line integral 101—109
Linear differential equation 299—312
Linear group 76—78
Linear transformation 76—89
Liouville's theorem 122
Local mapping 130—133
Local solution 299
Locally bounded 216
Locally exact 144
Logarithm 46—48
Lucas theorem 29
Majorant 37
Mapping theorem, Riemann's 221—227
Mapping, conformal 68—76 227—233
Mapping, continous 64—67
Mapping, local 130—133
Mapping, slit 251—253
Mapping, topological 65
Maximum 56
Maximum principle 133—137 164
Mean-value property 163—165 234—235
Measure, harmonic 244—249
Meromorphic, definition 128
Minimum 56
Minorant 37
Mittag-Leffler, G. 185
Modular function 269—270
Modular group 259
Module 146 257—258
Modulus 7
Monodromy theorem 285—287
Morera's theorem 122
Multiply connected regions 144—147
Neighborhood 52
Noneuclidean distance 137
Noneuclidean length 137
Normal derivative 162
Normal family 210—219
One to one 65
Onto, definition 65
open 52
Order of branch point 98
Order of entire function 207
Order of pole 30 127
Order of rational function 31
Order of zero 29 127
Order relation 5
Order, algebraic 128
Ordinary point 300
Orientation 83
Osgood, W.F. 222
parabola 90
Parabolic, definition 86
PARAMETER 68
Parameter, change of 68
Parameter, linear 68
Partial fraction 31 185—189
Period 45—46 255
Perron, O. 240
Picard theorem 297—298
piecewise 69
Plane, complex 12
Plane, extended 18
Point curve 69
Point, accumulation 53
Point, branch 98 287—291
Point, fixed 86
Point, isolated 53
Point, limit 62
Реклама