Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Wolf E.L. — Nanophysics and nanotechnology. An introduction to modern concepts in nanoscience | |
Anderson P.W. — Basic notions of condensed matter physics | |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 130.B |
Collin R.E. — Foundations for Microwave Engineerings | 25 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 201 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 201 |
Guillemin V., Sternberg S. — Geometric Asymptotics | 105 |
Hayek S.I. — Advanced mathematical methods in science and engineering | 311 |
Allen M.P., Tildesley D.J. — Computer simulation of liquids | see “Relative permittivity” |
Frenkel D., Smit B. — Understanding Molecular Simulation: from algorithms to applications | 303 |
Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 3, Fluid dynamics) | 243 |
Kuchel P.W., Ralston G.B. — Schaum's outline of theory and problems of biochemistry | 85 |
Jensen F. — Introduction to Computational Chemistry | 24 |
McCammon A.J., Harvey S. — Dynamics Of Proteins And Nucleic Acids | 153 |
Leach A.R. — Molecular Modelling Principles and Applications | 297 |
Guenther R.D. — Modern optics | 28, 30, 60, 252, 263, 267—268, 273, 276—278, 620 (see also “Index of refraction” |
Edwards H. — Advanced Calculus: A Differential Forms Approach | 241 |
Safran S.A. — Statistical thermodynamics on surfaces, interfaces and membranes | 155 |
Efetov K. — Supersymmetry in disorder and chaos | 135—136, 292 |
Lakowicz J.R. — Principles of Fluorescence Spectroscopy | 187, 188 |
Williams B.W. — Power Electronics | 5, 8 |
Browne M.E. — Schaum's outline of theory and problems of physics for engineering and science | 278 |
Edminister J.A. — Schaum's outline of electromagnetics | 13 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 325 |
Elliott R.J., Gibson A.F. — An Introduction to Solid State Physics and Its Applications | 71, 179, 200, 265 |
Mayer J.E., Mayer M.G. — Statistical Mechanics | 331—340, 361 |
Weatherburn C. — Advanced Vector Analysis | 112 |
Greiner W. — Quantum mechanics. An introduction | 323 ff. |
Harrison W.A. — Elementary electronic structure | see “Dielectric susceptibility” |
Aitchison I.J.R., Hey A.J.G. — Gauge theories in particle physics. Volume 1: from relativistic quantum mechanics to QED | 318—319 |
Itoh K., Fukayama A. — Transport and Structural Formation in Plasmas | 81, 235, 239, 252 |
Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 599 |
Thouless D.J. — Topological quantum numbers in nonrelativistic physics | 106 |
Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 20, 206—207, 546, 551 |
Isihara A. — Statistical physics | 204, 424 |
Kerker M. — The scattering of light | 9 (see also “Fluctuations”) |
Ziman J.M. — Elements of Advanced Quantum Theory | 45, 47 |
Moss T. — Photoconductivity In The Elements | see Refractive index |
Planck M. — Introduction to Theoretical Physics | 239 |
Debye P. — Polar Molecules | 8 |
Born M. — Einstein's Theory of Relativity | 144 |
Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 2:1223 |
Ito K. — Encyclopedic Dictionary of Mathematics | 130.B |
Planck M. — Theory of electricity and magnetism,: Being volume III of Introduction to theoretical physics | 9 |
Menzel D.H. — Mathematical Physics | 3, 7, 247, 308 |
Konopinski E.J. — Electromagnetic fields and relativistic particles | 525—526 |
Langmuir I. — Phenomena, Atoms and Molecules | 222, 242, 258, 261, 265 |
Haas A.E. — Introduction to theoretical physics, Vol. 1 and 2 | 248 |
Klinzing G.E. — Gas-Solid Transport | 30—31, 162 |
Fishbane P.M. — Physics For Scientists and Engineers with Modern Physics | 724, 725, 732 |
Page Ch.H. — The Algebra of Electronics | 68 |
Kythe P.K. — Fundamental Solutions for Differential Operators and Applications | 112 |
van de Hulst H.C. — Light Scattering by Small Particles | 115, 267 |
Structure Property Relationships in Polimers | 44, 73, 74, 78, 79 |
Born M. — Atomic Physics | 232—234 |
Sakai K. (ed.) — Terahertz Optoelectronics | 205, 206, 208, 212, 213, 215—218, 221, 223 |
Koerber G.G. — Properties of Solids | 111, 118, 251—254 |
Kyle T.G. — Atmospheric transmission, emission and scattering | 80, 81, 83 |
Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 425 |
Mott N.F. — Electronic processes in ionic crystals | 10 |
Bube R.H. — Electronic Properties of Crystalline Solids: An Introduction to Fundamentals | 15, 403, 407 |
Seitz F. — Modern Theory of Solids | 629, 635 |
Guggenheim E.A. — Thermodynamics | 335, 343 |
Kubo R., Toda M., Hashitsume N. — Statistical physics II. Nonequilibrium statistical mechanics | 179, 180 |
Unertl W.N. — Physical Structure | 139 |
Billingham J., King A.C. — Wave Motion | 187, 199 |
Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | II-10-1 f |
HyperChem Computational Chemistry | 27, 84, 180 |
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 139 |
Kubo R. — Statistical Mechanics: An Advanced Course with Problems and Solutions | 113, 311, 318, 379, 408 |
Lieberman M.A., Lichtenberg A.J. — Principles of Plasma Discharges and Materials Processing | 93—94 |
Castelfranchi G. — Recent Advances in Atomic Physics | i, 40 |
Guillemin V. — Geometric Asymptotics (Mathematical Surveys and Monographs Number 14) | 105 |
Kittel C. — Introduction to solid state physics | 94 |
Cercignani C. — Theory and Application of the Boltzman Equation | 344 |
Anderson P.W. — The theory of superconductivity in the high-Tc curprates | 124—125 |
Eddington A. — The Internal Consitution of the Stars | 237 |
Gruener G. — Density waves in solids | 118, 167, 171 |
Wolf E.L. — Nanophysics and nanotechnology: an introduction to modern concepts in nanoscience | 49, 100, 102 |
Orlando T.P., Delin K.F. — Foundations of Applied Superconductivity | 31, 515, 524 |
Animalu A.O. — Intermediate Quantum Theory of Crystalline Solids | 226 |
Efros A.L. (ed.), Pollak M. (ed.) — Electron-electron interactions in disordered systems | 250, 266, 270, 272, 437, 640 (see also “Dielectric function”) |
Ziman J.M. — Electrons and Phonons: The Theory of Transport Phenomena in Solids | 208, 429, 438 |
Beaurepaire E., Bulou H., Scheurer F. — Magnetism: A Synchrotron Radiation Approach | 123 |
Streetman B.G. — Solid State Electronic Devices | 439 |
Gray C.G., Gubbins K.E. — Theory of molecular fluids | 144, 169, 174, 237, 249, 397, 405, 541, 565, 569 |
Kompaneyets A.S., Yankovsky G. — Theoretical Physics | 153, 162, 442 |
Tyson R.K. (ed.) — Adaptive optics engineering handbook | 185 |
Slater J.C. — Introduction To Chemical Physics | 365 |
Li L.-W., Kang X.-K., Leong M.-S. — Spheroidal Wave Functions in Electromagnetic Theory | 149 |
Israelachvili J.N. — Intermolecular and surface forces | 29, 41, 44, 79—80 |
Fersht A. — Structure and Mechanism in Protein Science | 6, 73, 74, 160, 325, 326 |
Shore S.N. — The Tapestry of Modern Astrophysics | 501—502 |
Mazo R.M. — Brownian Motion: Flucuations, Dynamics, and Applications | 200 |
Fogiel M. — The optics problem solver | 5—22 |
Neff H.P.Jr. — Introductory electromagnetics | see "Permittivity, relative" |
Houston W.V. — Principles of Mathematical Physics | 197 |
Nayfeh A.H., Pai P.F. — Linear and Nonlinear Structural Mechanics | 342, 532 |
Weyl H. — Space, Time, Matter | 72 |
Cotterill R.M.J. — Biophysics: An Introduction | 59 |
Stahl A., Balslev I. — Electrodynamics of the Semiconductor Band Edge | 46 |
Berne B. — Statistical Mechanics. Part A: Equilibrium Techniques | 88, 90, 118 |
Measures R.M. — Laser remote sensing. Fundamentals and applications | 12 |
Lim Y. (ed.) — Problems and solutions on solid state physics, relativity and miscellaneous topics | 1052, 1053 |
Compton A.H., Allison S.K. — X-Rays in Theory and Experiment | 277 |
Fox M. — Optical properties of solids | 6, 255 |
Ashcroft N.W., Mermin N.D. — Solid State Physics | see also "Polarizability" |
Mott N.F. — Elements of Wave Mechanics | 77 |
Frohlich H. — Theory of Dielectrics: Dielectric Constant and Dielectric Loss | 1 ff. passim |
Dekker A.J. — Solid State Physics | 133, 186 |
Azaroff L.V. — Introduction to Solids | 380 |
Pedrotti L.M. — Introduction to Optics | 198, 579 |
Johnson K., Lark-Horovitz V.A. — Methods of Experimental Physics Solid State Physics (Volume 6/Part B) | 1 |
Schwartz M. — Principles of electrodynamics | 50 |
Peebbles P.Z. — Radar Principles | 57 |
Accetta J.S. (ed.), Shumaker D.L. (ed.), Rogatto W.D. (ed.) — The Infrared & Electro-Optical Systems Handbook. Volume 3: Electro-Optical Components | see "Permittivity" |
Ghatak A.K., Thyagarajan K. — Optical Electronics | 4 |
Northolt M.G. — Separation Techniques Thermodynamics Liquid Crystal | see "Polarizability" |
Mayer J.E., Goeppert Mayer M. — Statistical mechanics | 331—340, 361 |
Busch K., Lolkes S., Wehrspohn R.B. — Photonic Crystals. Advances in Design, Fabrication, and Characterization | see "Microwave material" |
Lindsay R.B. — Mechanical Radiation | 166 |
Doremus R.H. — Glass Science | 292 |
Morse P.M. — Methods of theoretical physics | 201 |
Bridgman P.W. — Dimensional Analysis | 78 |
Sommerfeld A., Ramberg Edward G. (translator) — Electrodynamics. Lectures on theoretical physics, Vol. III | 21 |
McQuarrie D.A. — Statistical Mechanics | 50 |
Chaikin P., Lubensky T. — Principles of condensed matter physics | 20, 206—7, 546, 551 |
Goldsmid H.J. (ed.) — Problems in solid state physics | 7.6, 7.7, 7.8, 7.14, 15.1 |
Richards P.I. — Manual of Mathematical Physics | 64 |
Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 30 |
Gedde U.W. — Polymer Physics (Chapman 1995) | 225 |
Wiedemann H. — Particle accelerator physics II | 164 |
Wilson W.F.R.S. — Theoretical physics. Volume II. Electromagnetism and optics | 34, 39, 43, 46, 67 |
Slater J.C., Frank N.H. — Electromagnetism | 43—44, 105—114 |
Hlavac J. — The Technology of Glass and Ceramics | see "Permittivity" |
Schreiber E. — Femtosecond real-time spectroscopy of small molecules and clusters | 42 |
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 393 |
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 144 |
Gosser D.K. — Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms | 18, 32t, 73 |
Davies J.H. — The physics of low-dimensional semiconductors : an introduction | 105, 349 |
Schwarzenbach D. — Crystallography | 177 |
0 — Holt Physics | 556, 557t, 561 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 175 |
Koonin S.E., Meredith D.C. — Computational Physics-Fortran Version | 155 |
Boyd R.W. — Nonlinear Optics | 563 |
Synge J.L. — Relativity: The Special Theory | 416 |
Abrikosov A.A., Gorkov L.P., Dzyalosliinski I.E. — Methods of quantum fields theory in statistical physics | 141, 165, 250ff., 257ff. |
Barut A.O. — Electrodynamics and Classical Theory of Fields and Particles | 91 |
Zeidler E. — Oxford User's Guide to Mathematics | 505, 507 |
Migdal A.B., Krainov V. — Approximation Methods in Quantum Mechanics | 21 |
Spitzer L.Jr. — Physics of Fully Ionized Gases Interscience Tracts on Physics and Astronomy No. 3 | 35, 54, 56, 57 |
Beran M.J. — Statistical Continuum Theories | see "Permittivity" |
Gosser D.K.J. — Cyclic voltametry. Simulation and analysis of reaction mechanism | 18, 32t, 73 |
Attwood S.S. — Electric and Magnetic Fields | 6, 25, 63 |
Rice F.O., Teller E. — The structure of matter | 48 |
Worsnop B.L., Flint H.T. — Advanced Practical Physics for Students | 600 |
Haus H.A. — Waves and Fields in Optoelectronics | 6, 35 |
Hopf L., Nef W. — Introduction To The Differential Equations Of Physics | 78 |
Abrikosov A.A., Gîr'kov L.P., Dzyalosiiinskh I.Yk. — Quantum field theoretical methods in statistical physics | 141, 165, 250ff., 257 ff. |
Slater J., Frank N. — Introduction to Theoretical Physics | 239 |
Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | II-10-1 f |
Lambert J.B., Mazzola E.P. — Nuclear Magnetic Resonance Spectroscopy | 77—78 |
Davies P. — The New Physics | 229, 476—477, 479 |
Ehrenberg W. — Electric Conduction in Semiconductors and Metals | 138 |
Askeland D.R. — The Science and Engineering of Materials | 654, 666 |
Springford M. — Electrons at Fermi surface | 26, 28 |
Guillemin V., Sternberg S. — Symplectic techniques in physics | 131 |
Moeller K. — Optics: Learning by Computing, with Examples Using Maple, MathCad®, Matlab®, Mathematica®, and Maple® (Undergraduate Texts in Contemporary Physics) | 318 |
Castelfranchi C. — Recent advances in Atomic Physics Volume II Quantum Theory | i.40 |
Krall N., Trivelpiece A. — Principles of Plasma Physics | 167, 629 |
Bellac M. — Thermal Field Theory (Cambridge Monographs on Mathematical Physics) | 137 |
Melissinos A.C. — Principles of modern technology | 128 |
Corciovei A., Costache G., Dederichs P.H. — Solid State Physics | 179, 183, 203 |
Lipparini E. — Modern many-particle physics: atomic gases, quantum dots and quantum fluids | 44, 131, 298, 352 |
Kittel C. — Introduction to solid state physics | 388 |
Iwamoto M., Chen-Xu W. — The Physical Properties of Organic Monolayers | 23, 29, 33, 89 |
Bell J., Kearsley M., Pitaevskii L. — Course of Theoretical Physics, Volume 8, Volume 8, Second Edition: Electrodynamics of Continuous Media | see Permittivity |
Landau L.D., Lifshitz E.M. — Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media | see Permittivity |
Bell J.S., Kearsley M.J. — Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media | see Permittivity |
L.D. Landau, E.M. Lifshitz — Electrodynamics of Continuous Media | see Permittivity |
L.D. Landau — Electrodynamics of Continuous Media | see Permittivity |
L. D. LANDAU, E. M. LIFSHITZ — ELECTRODYNAMICS OF CONTINUOUS MEDIA | see Permittivity |