Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
McCammon A.J., Harvey S. — Dynamics Of Proteins And Nucleic Acids
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Dynamics Of Proteins And Nucleic Acids
Àâòîðû: McCammon A.J., Harvey S.
Àííîòàöèÿ: This book is a self-contained introduction to the theory of atomic motion in proteins and nucleic acids. An understanding of such motion is essential because it plays a crucially important role in biological activity. The authors, both of whom are well known for their work in this field, describe in detail the major theoretical methods that are likely to be useful in the computer-aided design of drugs, enzymes and other molecules. A variety of theoretical and experimental studies is described and these are critically analyzed to provide a comprehensive picture of dynamic aspects of biomolecular structure and function. The book will be of interest to graduate students and research workers in structural biochemistry (X-ray diffraction and NMR), theoretical chemistry (liquids and polymers), biophysics, enzymology, molecular biology, pharmaceutical chemistry, genetic engineering and biotechnology.
ßçûê:
Ðóáðèêà: Ìåäèöèíà è çäðàâîîõðàíåíèå /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1987
Êîëè÷åñòâî ñòðàíèö: 234
Äîáàâëåíà â êàòàëîã: 20.11.2006
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Activated process 54 116 131
Activated process, reaction coordinate 131 172
Activated process, simulation by activated molecular dynamics 73—75
Activation volume 135
Adiabatic mapping 35—37 46 54—57 117—118
Adiabatic mapping, convergence 55—57
Adiabatic mapping, DNA helix bending 145—147
Adiabatic mapping, DNA helix twist 125 145—146
Adiabatic mapping, DNA melting 125
Adiabatic mapping, global motions 138
Adiabatic mapping, hinge bending: lysozyme 140;
Adiabatic mapping, hinge bending: tRNA 147—149
Adiabatic mapping, large scale deformations 54 57 139
Adiabatic mapping, myoglobin 118
Adiabatic mapping, thermodynamic considerations 47 55
Adiabatic mapping, tyrosine ring flip 54 119—120
Adopted basis set Newton — Raphson method 49
Allosteric transitions 172
Alpha helix 15
AMBER 181
Anharmonicity 36 59 72 82—84 99 107 109—110 116 162
Anharmonicity, quasiharmonic approximation 67—68
Anisotropy 81 84 107—109
Antibodies 137
Antibodies, hinge bending 149
Antibody-antigen interactions flexibility 169
Arabinose-binding protein, hinge bending 141 144 169
Arabinose-binding protein, ligand binding 172
Arabinose-binding protein, solvation 150 172
Argon, liquid 62 65
Array processors 159
Atom type 183 185
Base pairing 18—19
Base stacking 19
Beeman method 174—175
Beta sheet 15
Bond angle, potential function 40
Born — Oppenheimer treatment 39 42 66
Brownian dynamics 37—38 75—78 161 171
Brownian dynamics, diffusional encounter 152—154 165 170
Brownian dynamics, DNA helix bending 146
Brownian dynamics, hydrodynamic interactions 77
Brownian dynamics, Langevin equation, relationship 139
Brownian dynamics, large scale motions 139
Brownian dynamics, local motions 145
Brownian dynamics, protein denaturation 142
Brownian dynamics, rate constant calculations 77—78
Catabolite activator protein 170
Cedar 181
CHARMM 181
Collagen 32
Collision frequency 93--5 190
Computer programs, description 181—187
Computing methods, advances in hardware 158—160
Computing methods, advances in methodology 160—161
Conjugate gradient 47—48 51—53
Conjugate gradient, convergence on quadratic surface 51
Conjugate gradient, efficiency 52
Constraints, during molecular dynamics 176—180
Constraints, forces 46
Coordinate file 45 183
Correlation function, time, definition 84
Correlation function, time, Langevin oscillator 95
Correlation function, time, range of validity 94
Counterion condensation 19
Covalent bond, potential function 40
Crankshaft motions 112
Cutoff distance 40 184
Cytochrome c 14 80 98
Cytochrome c, collective motions 82 87—89 91
Debye — Hueckel model 153
Debye — Waller factor 97
Denaturation 31 33
Denaturation, Brownian dynamics 142
Denaturation, local 138 142
Denaturation, molecular dynamics 97
Descent techniques, iterative 50
Dielectric coefficient 42
Dielectric coefficient, distance-dependent 42
Dielectric coefficient, effective 43—44
Dielectric coefficient, scaling 105
dielectric constant 153
Dielectric constant, liquid hydrocarbons 10
Dielectric constant, water 10
Dielectric screening 40 42—43 97 105 150 171
Diffusion 26
Diffusion coefficient 26
Diffusion coefficient, hydrodynamic models 77
Diffusion coefficient, relative 33 76
Diffusion coefficient, water at protein surface 86
Diffusion in solids 132
Diffusion, Brownjan dynamics simulations 37 75—78 152—154 165 170
Diffusion, denaturation 138 142
Diffusion, Einstein relationship 26 93
Diffusion, flexible solutes 27
Diffusion, gated 34 155
Diffusion, hydrodynamic interactions, effects of 33 76—77
Diffusion, internal motions in macromolecules 93
Diffusion, intramolecular flexibility 145
Diffusion, intramolecular flexibility: tRNA 147
Diffusion, ligand binding 34 154 165
Diffusion, molecular associations 151—152 170:
Diffusion, oxygen in protein 104
Diffusion, rotational 93 100
Diffusion, superoxide dismutase 152—154
Diffusional encounter 33 151—154
Dispersion forces 16 19
Distribution function moments 82 107
DNA, A-DNA 19
DNA, atomic displacements 107
DNA, B-DNA 19
DNA, B-Z transition 33 130
DNA, double helix 19
DNA, function 1
DNA, helix bending 145—147
DNA, helix twist 125 145—146
DNA, hydration 19
DNA, left-handed 3 19
DNA, molecular weight 3
DNA, secondary structure 3 18—19
DNA, secondary structure: melting 125
DNA, structure: reviews 19;
DNA, structure: sequence-dependence 3 112—113
DNA, sugar pucker 125
DNA, torsional stiffness 114
DNA, Z-DNA 19 107 111—114 127
DNA, Z-DNA, structure refinement 162
Electron transfer 39 171
Electrostatic interactions, diffusional encounter 153—154
Electrostatic interactions, polarization effects 39 42 132—133 135;
Electrostatic interactions, polarization effects, modeling 171
Electrostatic interactions, potential function 40
Electrostatic interactions, solvent screening 11 19 44 153—154
Energy minimization 36 47—54
Energy minimization, Crystallographic refinement 46
Energy minimization, molecular dynamics: relationship 44—47
Energy minimization, thermodynamic considerations 47
Enthalpy, activation 135
Enthalpy, configurational 66
Enthalpy, entropy 36 47 121
Enthalpy, hydration 9
Enthalpy, ligand binding 118
Enthalpy, molecular association 22—23 169
Enthalpy, normal mode analysis 67
Enthalpy, quasiharmonic approximation 67
Enthalpy, thermodynamic cycle perturbation method 166
Enthalpy, umbrella sampling 69
Enthalpy, vibrational 130
Enzyme activity 167—168
Equations of motion 46 61—62
Equations of motion, numerical integration 173—180
Experimental methods reviews 5
Extended atoms 58 182
Flash photolysis 123
Fluorescence depolarization 104
Fluorescence depolarization, hinge bending motions 144—145
Fluorescence depolarization, simulation 146
Fluorescence quenching 104
Free energy calculations 66—73
Free energy calculations, ligand binding 166
Free energy calculations, normal mode analysis 67
Free energy calculations, perturbation theory 69—70
Free energy calculations, potential of mean force 69
Free energy calculations, solvation 70
Free energy calculations, thermodynamic integration 72
Free energy calculations, umbrella sampling 68 120
Friction coefficient 26 77
Friction coefficient, effect on reaction rate 131
Gated process 133—134 170
Gated process, ligand binding 123 136 155—156 166 169
Gated process, ring rotations 133
Gated process, tyrosine ring flip 121
Gear method 176
Gibbs free energy 67
Grid search 48 53
GROMOS 181
Haemoglobin, function 1
Haemoglobin, ligand binding 154 165
Haemoglobin, protein exchange 103
harmonic oscillator 59
Harmonic oscillator, Langevin equation 92—93 110 140
Harmonic oscillator, multidimensional 59
Helmholtz free energy 67 70
Hexokinase, hinge bending 145
Hydration, ionic 10 25—26
Hydration, ligand binding 171
Hydration, nonpolar solutes 8—9
Hydration, nucleic acids 19
Hydration, potential functions 42—43
Hydration, proteins 14
Hydrodynamic models 76—77
Hydrogen bond 7 182—184 186
Hydrogen bond in proteins 15
Hydrogen bond, geometry 182
Hydrogen bond, motions 103—104 110—111
Hydrogen bond, potential function 41 186
Hydrogen exchange, DNA 125—126
Hydrogen exchange, models 103
Hydrogen exchange, nucleic acids 33
Hydrogen exchange, proteins 102—104
Hydrophobic effect 10—11 13 16 19
Ice, structure 8
Immunoglobulins, hinge bending 145
Infrared absorption spectroscopy 57
Intercalation 34 130
Internal coordinates 45 49 182
Internal energy, normal mode analysis 67
Internal energy, umbrella sampling 69
Ions, hydration 10 25—26
Lac repressor 163
Lac repressor, hinge bending 169—170
Langevin equation 27
Langevin equation, Brownian dynamics, relationship 139
Langevin equation, effective friction constant, calculation 94
Langevin equation, harmonic oscillator 92—93 110 140
Langevin equation, internal motions 35 55 92—94 138 140
Langevin equation, stochastic boundary conditions 64
Leapfrog method 174
Ligand binding 67 117 165—166
Ligand binding, hydration effects 171
Ligand binding, perturbation theory 72
Ligand binding, proteins 2—3
Liquid structure 116
Lysozyme, hinge bending 90 140—144
Mean square displacement matrix 81
Minimum image convention 63
Models, phenomenological 27—28 91—95 165
Molecular association 22—24 33—34 168—170
Molecular association, dynamics 151—156
Molecular association, hydration changes 34
Molecular association, protein-DNA interactions 23
Molecular association, reviews 24
Molecular association, solvent effects 43
Molecular Dynamics 6 36—37 60—66
Molecular dynamics, activated molecular dynamics 73—75 117
Molecular dynamics, activated molecular dynamics, oxygen in myoglobin 165—166;
Molecular dynamics, activated molecular dynamics, tyrosine ring flip 118—123
Molecular dynamics, activated processes 37
Molecular dynamics, active site 37 64—65
Molecular dynamics, constant pressure 64 188—189 191—193
Molecular dynamics, constant temperature 64 188—191
Molecular dynamics, constrained 38 176—180
Molecular dynamics, crystal environment 84
Molecular dynamics, crystallographic refinement 65 162—163
Molecular dynamics, DNA 146
Molecular dynamics, DNA, instability 105
Molecular dynamics, DNA, table 106
Molecular dynamics, energy conservation 62
Molecular dynamics, energy minimization 65
Molecular dynamics, energy minimization, relationship 44—47
Molecular dynamics, equilibration 187
Molecular dynamics, history 62
Molecular dynamics, large scale deformations 57 139
Molecular dynamics, ligand binding 165—166
Molecular dynamics, limitations 65—66 157
Molecular dynamics, low temperature 65 163
Molecular dynamics, Monte Carlo, comparison 38 66
Molecular dynamics, periodic boundary conditions 45 63 160
Molecular dynamics, quantum corrections 38—39
Molecular dynamics, rare events 37
Molecular dynamics, solvent 62 159
Molecular dynamics, solvent, effects 84—85 107;
Molecular dynamics, solvent, mobility 85—86
Molecular dynamics, stochastic boundary conditions 65 160
Molecular dynamics, structure refinement 65 161—164
Molecular dynamics, thermodynamic considerations 47
Molecular dynamics, thermodynamic ensembles 64 188—189
Molecular dynamics, warmup 187
Molecular mechanics 39 44 58
Monte Carlo method 6 38
Monte Carlo method, efficiency 38 66
Monte Carlo method, molecular dynamics, comparison 38 66
Monte Carlo method, normal modes 161
Mossbauer spectroscopy 102
Motions, intramolecular, amplitude 80—82 87 107 115
Motions, intramolecular, amplitude, solvent effects 85—86
Motions, intramolecular, amplitude, table 29;
Motions, intramolecular, amplitude, time-dependence 84 87
Motions, intramolecular, anharmonicity 36 59 72 82—84 99 107 109—110 116 162
Motions, intramolecular, anharmonicity, quasiharmonic approximation 67—68
Motions, intramolecular, anisotropy 81 84 107—109
Motions, intramolecular, antigenicity, relationship 169
Motions, intramolecular, base pair melting 33
Motions, intramolecular, charge effects 32
Motions, intramolecular, collective 87—91 115—116
Motions, intramolecular, comparison of proteins and nucleic acids 32
Motions, intramolecular, correlations 84 88—89 98 110—112 116
Motions, intramolecular, damping 30—31 75 80 93 115—117 137 149—150
Motions, intramolecular, damping, DNA bending 146
Motions, intramolecular, damping, lysozyme hinge bending 141
Motions, intramolecular, damping, tRNA 149
Motions, intramolecular, elastic 30—32 137—138 140 144 146 149
Motions, intramolecular, experimental comparisons 96—105 115 142 144—145 147
Motions, intramolecular, global 30—32 137—150
Motions, intramolecular, global, biological significance 137
Motions, intramolecular, global, nucleic acids 145—149;
Motions, intramolecular, global, proteins 139—145
Motions, intramolecular, helix-coil transition 31 142—144
Motions, intramolecular, hinge bending 29—32 139—145
Motions, intramolecular, hinge bending, arabinose-binding protein 141 144 169
Ðåêëàìà