Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Abrikosov A.A., Gorkov L.P., Dzyalosliinski I.E. — Methods of quantum fields theory in statistical physics
Abrikosov A.A., Gorkov L.P., Dzyalosliinski I.E. — Methods of quantum fields theory in statistical physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Methods of quantum fields theory in statistical physics

Авторы: Abrikosov A.A., Gorkov L.P., Dzyalosliinski I.E.

Аннотация:

"A classic text on field theoretic methods in statistical physics"—American Scientist. A comprehensive introduction to the many-body theory and its ramifications by three internationally known Russian physicists, directed to physicists, mathematicians, and others involved in statistical and solid state physics.


Язык: en

Рубрика: Физика/Термодинамика, статистическая физика/Квантовые методы/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: second edition

Год издания: 1965

Количество страниц: 365

Добавлена в каталог: 25.07.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Acoustic absorption      148
Acoustic branches      3
Acoustic excitations      162
Adiabatic switching on      47
Advanced Green function      56 145
Anharmonic terms      4
Anisotropic superconductor      334
Annihilation operators      53 65 105
Anomalous skin effect      328
Born approximation      34
Bose branches      162ff.
Bose condensation      203 245 249 285 286
Bose excitations      155
Bose liquid      5ff. 233
Bose type spectrum      4
Causal function      342
chemical potential      20 54 60 63 96 98 131 161 196
Closed loop      71 77 129
Collision integral      13 24 340 341
Collision processes      170
Compact diagram      91 135 139
Connected diagrams      68 88 109 128 129
Conservation laws      80 85 131 150 340
Contraction      65
Cooper effect      39
Cooper pairs      279 285 323
Coulomb interactions      187 189 279
Creation operators      53 65 105
Critical magnetic field      304
Current density      305
Damping      194 233 240
Damping of quasi-particles      170ff.
Decay of excitations      356
Density correlation      98
Diagram techniques      63ff. 109ff.
dielectric constant      141 165 250ff. 257ff.
Dielectric permeability      148
Dilute boson gas      31ff. 220ff.
Dilute Fermi gas      35ff. 61
Dirty superconductors      322ff.
Dispersion relations      144
Displacement vector      262
Dyson equation      83ff. 90 91 132ff. 139 213 237
Effective interaction potential      229ff.
effective mass      21 35 38 40 152 160 358
Electrical conductivity      339
Electrical resistance      141
electromagnetic field      251
Electromagnetic field Green function      148 254
Electromagnetic radiation      250ff.
Electron damping      199
Electron Green function      182ff. 195ff.
Electron self-energy      86 182
Electron-phonon interactions      76 82 86 91ff. 116ff. 177ff. 279 296ff. 323
Elementary excitations      4 7 18 34
Energy flux      357
Energy gap      16 293 310 333
Energy spectrum      34
exchange interaction      20
Excitation distribution function      357
Excitation spectrum      50 57 60 92
Fermi liquid      15ff. 61 152ff. 233 280 339ff.
Fermi momentum      60 164
Fermi sphere      15 17
Fermi surface      20 23 25
Fermi type spectrum      4
Feynman diagrams      66ff.
First sound      14
Free energy      252
Gauge invariance      159 293ff. 297 306 357
Gauge transformation      251
Ginzburg — Landau theory      321
Grand ensemble average      96 248
Grand partition function      2
Graphical summation      83
Green functions      49ff. 83
Ground state energy      38 40 60 93 262
Heat conductivity      148 339
Heisenberg operators      97 135 141
Heisenberg representation      44
Helium      233 246
Holes      16 60 152
Ideal bose gas      245
Ideal Fermi gas      17
Impurities      322
Interaction representation      42ff. 101ff. 341
Ionic sound      194
Irreducible self-energy part      84 86 179 190
Isotope effect      287
Ladder diagrams      153 174 229 335
Lambda transition      246
Lambda-point      14
Lattice defects      322
Linearisation      340
Liquid $Hc^{3}$      26 176
London equations      310
London type superconductor      310 321
Low density approximation      226ff.
Magnetic interaction      20
magnetic susceptibility      26
Main diagrams      83
Many-particle Green functions      87ff. 98 104 109 134 141 146
Many-tailed diagrams      135
Mass operator      84 133
Matsubara's method      96 133
Maxwell equations      251 253
Meissner — Ochsenfled effect      277
Momentum flux      357
Momentum representation      51 118
Neutron scattering      98 149ff.
Non-singular diagrams      174
Normal fluid      13
Normal product      65 107
Normal skin effect      328
Occupation numbers      36
One-particle Green function      49 92
Oscillator strengths      273
Pairing      69
Particle current density      358
Particle distribution function      354 357
Particle flux      357
Penetration depth      277 308 311 318 321 337 338
Phonon damping      181 187
Phonon Green function      53 57 77 82 92 96 99 101 104 109 117 141 179ff.
Phonon self-energy      87
Phonons      3 6 51 75
Pippard type superconductor      311 321
plasma      176 189ff. 278
Plasma vibrations      195
Point interactions      75 116
Polarisation      76
Polarisation operator      259ff. 262
Quasi-momentum      3
Quasi-particle damping      187
Quasi-particles      4 18 60 155 187
Radiation gauge      256
Residual resistance      322
Retardation effects      274
Retarded Green function      56 145
Roton decay      241
Rotons      9
Scalar potential      250
Scattering of quasi-particles      157
Scattering processes      356
Schroedinger representation      44
screening      76 187
Second quantisation      27ff.
Second sound      14
Self-energy diagrams      212
Self-energy part      84 195 236
Single-particle Green function      141 209
skeletons      85
Sound      14 22ff.
Sound velocity      35 38 40 76 162 194 238
Specific heat      166ff. 188 302ff.
Spin waves      26 155
Spin-orbit interaction      20
Stress tensor      264 267 276
Superconducting alloys      322ff.
Superconductivity      39 176 277ff.
Superconductors      339
Superfluid      13
Superfluidity      10 16 108 277
T-ordering      48
T-product      105
Temperature-dependence of the gap      300ff.
Temperature-dependent Green Functions      95ff.
Thermodynamic potential      2 96 99 128ff. 137ff. 146 200ff. 252 302
Thermodynamics of superconductors      300ff.
Time-ordering operator      47
Topologically non-equivalent connected diagrams      77
Topologically non-equivalent diagrams      69 71 74 112 115
Transition temperature      286 323
Transport coefficients      148
Transport equation      13 24 339ff. 348ff.
Transport properties      141
Two-particle Green function      98 104 135 156 343 344
Uncondensed particles      205 212
Unconnected diagrams      68 71 108 128 129
Van der Waals forces      250 261ff. 271
Vector potential      250
Vertex      70 109
Vertex part      85 87ff. 91 92 132 135 136 152ff. 163 173ff. 177ff. 191ff. 238 281ff. 342ff. 348ff.
viscosity      148 339
Wick's theorem      64ff. 88 104ff. 128 131
X-ray scattering      99
Zero sound      23 155 164 281 340 350
Zero-point energy      8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте