Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Collin R.E. — Foundations for Microwave Engineerings
Collin R.E. — Foundations for Microwave Engineerings



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Foundations for Microwave Engineerings

Àâòîð: Collin R.E.

Àííîòàöèÿ:

"FOUNDATIONS FOR MICROWAVE ENGINEERING, Second Edition, covers the major topics of microwave engineering. Its presentation defines the accepted standard for both advanced undergraduate and graduate level courses on microwave engineering. An essential reference book for the practicing microwave engineer, it features:
Planar transmission lines, as well as an appendix that describes in detail conformal mapping methods for their analysis and attenuation characteristics
Small aperture coupling and its application in practical components such as directional couplers and cavity coupling
Printed circuit components with an emphasis on techniques such as even and odd mode analysis and the use of symmetry properties
Microwave linear amplifier and oscillator design using solid-state circuits such as varactor devices and transistors
FOUNDATIONS FOR MICROWAVE ENGINEERING, Second Edition, has extensive coverage of transmission lines, waveguides, microwave circuit theory, impedance matching and cavity resonators. It devotes an entire chapter to fundamental microwave tubes, in addition to chapters on periodic structures, microwave filters, small signal solid-state microwave amplifier and oscillator design, and negative resistance devices and circuits. Completely updated in 1992, it is being reissued by the IEEE Press in response to requests from our many members, who found it an invaluable textbook and an enduring reference for practicing microwave engineers.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 924

Äîáàâëåíà â êàòàëîã: 20.02.2006

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$k_0-\beta$ diagram      564—566
Admittance characteristic, of transmission line      76
Admittance electronic, in klystron      68S
Admittance inverters, in filters      603—614
Afsar, M.N.      130
Alexopolous, N.G.      111
Allison, J.      190
Alseyah, S.A.      647
Altschuler, E.E.      351
Amplification of I rave ling-wave tube      698
Amplification of klystron      685
Amplification of parametric amplifier      813 815—820
Amplifier, design of      755—759 780—795
Amplifier, double stage      788—793
Amplifier, gain of      274 728—735
Amplifier, low noise      773—776 787
Amplifier, single stage      781—788
Amplifier, stability of      736—744
Anderson, T.N.      421
Anisotropic media      26—28
Antenna, probe in waveguide      276—281
Aperture in rectangular cavity      517—523
Aperture, coupling by.in waveguide      284—294
Aperture, polarizability of circular      2B5
Attenuation for circular waveguide      196—197
Attenuation for coaxial transmission line      111 117
Attenuation for coplanar line      178—180
Attenuation for mikrostrip line      153—157 163—164
Attenuation for rectangular waveguide      188—189
Attenuation for strip line      171—173
Attenuation for transmission line      108—111
Attenuator electronic      400—404
Attenuator rotary      397—400
Ayres, W.P.      456
Backward-wave oscillator      709
Baden Fuller, A.J.      21
Badinet’s principle      580
Bahl, J.      166 219 413 432 479 500 875
Bailey.A B.      16
Balanis, C.A.      16
Bandwidth of matching network      325—330
Bandwidth of resonant circuit      483
Beam coupling parameter      672
Beam, electron      see “Electron beam”
Beck, A.H.W.      712
Beleuitch, V.      596
Benedek, P.      491
Benson.F.A.      190
Bessel functions      195 581—583 881—885
Bessel functions spherical      510—511
Bethe directional coupler      416—419
Bethe, H.A.      284 416
Bevensee, R.M.      647
Bhartia, P.      166 219 413 432 479 500 875
Bilinear transformation      716 725—726
Binomial quarter-wave transformer      350—352
Blackwelt, L.A.      830
Blight.R.E.      480
Bloch wave      556
Bloch wave impedance of      556—557 (see also “Periodic structures”)
Bobroff, D.      668
Bolinder, F.      374 393
Bosnia.H.      475 480
Bostian.C W.      16
Boundary conditions at conducting edge      43—44
Boundary conditions at conducting surface      41—43
Boundary conditions at infinity      44
Boundary conditions for electromagnetic field      39—44
Bowman, F.      8S5
Branch line directional coupler      432—434
Branch, G.M.      660
Brewer, G.R.      712
Brillouin flow for electron beam      653 701
Brillouin, L.      647 653
Brown, J.      346
Burton.M, N.      207 209
Button, K.J.      130 480
Capacitance distributed of coaxial line      115
Capacitance distributed of coplanar line      176
Capacitance distributed of microstrip line      147—151
Capacitance distributed of strip line      896—898
Capacitance distributed of transmission line      72—73
Capacitance of microstrip gap      493
Capacitance of microstrip open end      492
Capacitance of microstrip step      368
Capacitors for microstrip circuits      322
Carcinotrons      709
Carlin, H.J.      471
Carson, R.      798
Caulton.M.      322
Cavity coupling parameter for      496 521—523
Cavity cylindrical      504—508
Cavity cylindrical mode chart for      507
Cavity cylindrical Q of      507
Cavity cylindrical resonant frequency of      506
Cavity degenerate modes in      536—538
Cavity excitation of      538—541 683—686
Cavity field expansion m      525—533
Cavity filter      635—641
Cavity loap-coupled      523—525
Cavity oscillations in      533—536
Cavity perturbation of      541—545
Cavity rectangular      500—504
Cavity rectangular aperture coupled      517—523
Cavity rectangular Q of      503—504
Cavity rectangular resonant frequency of      501—502
Chang, K      210 219 413—414 479 722 724 798 875
Chang, K.K N.      830
Chebyshev filters      593—596
Chebyshev polynomials      353 355
Chebyshev quarter-wave transformer      352—360
Chebyshev tapered transmission line      380—383
Chew, W.C      149
Chodorow.M.      672 712
Choke joint      397
Choke joint in variable short circuits      395—397
Chow.K.K.      549
Chu, K.R.      712
Chu, L.J.      668
Circles, constant gain      744—755
Circles, constant mismatch      776—780
Circles, constant noise figure      772—776
Circles, constant stability      736—744
Circles, constant stability load      736
Circles, constant stability source      739
Circular polarized field      405—407 452
Circulator, four-port      468—471
Circulator, four-port characteristic impedance of      115
Circulator, four-port distributed parameters for      115—116
Circulator, four-port fields in      106—108
Circulator, four-port for parametric amplifier      816—817
Circulator, four-port, scattering matrix for      471—472
Circulator, four-port, three-port      471—476
Clarricoats, P.      480
Coaxial transmission line attenuation in      111 117
Cohn, S.B.      173 393 346 444 590 596 639 647
Coleman, J.T.      703
Collin.R.B.      16 43 165 171 208 241 277 284 286 340 346 380 393 417 418 525 544 888
Collins.G.B      712
Comstock, R.L.      480
Conformal mapping      886—889
Conformal mapping and conductor loss      898—910
Conformal mapping and conductor loss for coplanar line      905—910
Conformal mapping and conductor loss for microstrip line      903—905
Conformal mapping coplanar line      892
Conformal mapping for slot line      892
Conformal mapping for stnjj line      896—898
Conformal mapping microstrip line      892—896
Constitutive relations      23—28
Continuity equation for current      20
Coplanar transmission line      126—127 175—180
Coplanar transmission line attenuation in      178—180
Coplanar transmission line impedance of      176—176
Copson.E.T.      229
Corrugated plane as periodic structure      571—577
Costanzo, A.      850
Coupled microstrip line      126—121
Coupled microstrip line for directional coupler      427—432
Coupled strip line      173—174
Coupling coefficient, for coupled microstrip line      166
Coupling in directional coupler      414
Coupling of modes in lossy cavity      536—538
Coupling parameter for cavity      496 521—523
Courtoise, L.      549
Cullen, A.L.      830
Current linear, excitation of waveguide by      2B1—283
Current loop, in waveguide      283—284
Current normalized      223
Current on transmission line      106
Current, equivalent in waveguide      221—223
Cutoff frequence      see “Waveguide circular”; rectangular”
Cyclotron frequency      701 704
Dalman, G.C      219
Daly, D.A.      322
Damping of cavity      484
Delta function      59—60
Diaphragm capacitive, in rectangular guide      341—342
Diaphragm inductive, in rectangular guide      340—341
Dicke, R.H.      220 245 302 416 479 548
dielectric constant      25
Dielectric resonator      508—517
Dielectric resonator cylindrical      515—516
Dielectric resonator hemispherical      509—515
Dielectric resonator Q of      513
Directional coupler Bethe type      416—419
Directional coupler branch line      432—434
Directional coupler caupling in      414
Directional coupler Chebyshev      422—421
Directional coupler coupled line      427—432
Directional coupler directivity of      414
Directional coupler Lange      434—435
Directional coupler multielement      422—427
Directional coupler scattering matrix for      414—416
Directional coupler Schwinger reverse phase      420
Directional coupler two-hole      419—420
Directional coupler two-hole Moreno crossed guide      42]
Directional coupler two-hole Riblet T-slot      421
Disk resonator      496—500
Dispersion in microstrip line      168—163
Dispersion of signal in waveguide      198—204
Double-stream amplifier      708
Double-stub tuner      312—317
Double-stub tuner for waveguide      1342—343
E mode      102—104
E mode in circular guide      194—196
E mode in rectangular guide      193
E-H tuner      342—343
Edwards, T.C      219
Ekholdt, R.      322
Electron beam ac power relations for      667—670
Electron beam Brillouin flow for      653 701
Electron beam de conditions for      650
Electron beam ion-neutralized      650—651
Electron beam kinetic-power theorem for      670
Electron beam perveance of      650
Electron beam space-charge waves on      654—667
Electron beam velocity modulation of      670—678 (see also “Space-charge waves”)
Electron beam with axially confinec flow      651
Electron beam, beam coupling parameter for      672
Electron precession in ferrite      451—460
Electronic admittance of reflex klystron      688
Elliott, R.S.      16
Elliptic sine function      889—891
Emde, F.      895
Energy electric      34—36
Energy magnetic      34—36
Energy velocity of in free space      48
Energy velocity of in periodic structures      566—571
Energy velocity of in waveguides      204—205
Excitation of cavity      538—541 683—686
Excitation of waveguides      281—294
Exponential taper for transmission line      372
Faraday rotation in ferrites      460—464
Faraday’s law      18
Fay, C.E.      480
Ferguson, P.E.      703
Ferrite electron precession in      451—460
Ferrite Faraday rotation in      460—464
Ferrite in microwave devices      464—476
Ferrite magnetic permeability af      455 457—459
Ferrite plane-wave propagation in      459—460
Filling factor      155
Filters cavity direct-coupled      639—642
Filters cavity quarter-wsve-coupled      635—639
Filters frequency transformations in low-pass to bandpass      600—602
Filters frequency transformations in low-pass to high-pass      599—600
Filters frequency transformations in periodic      602-E03
Filters frequency transformations in, expansion      599
Filters half-wave      360—370 617—626
Filters image-parameter design of      587—590
Filters impedance inverters in      603—615
Filters insertion-loss design of      591—592
Filters low-pass designs for      595—598
Filters parallel coupled      626—635
Filters power loss ratio in      592—594
Filters power loss ratio in for Chebyshev      593
Filters power loss ratio in for maximally flat      593
Fin line      208—210
Floquet’s theorem      569—571
Foster’s reactance theorem      230—232
Fox, A.G.      409
Frequency bands      2—3
Fresnel reflection coefficient      51—52
Fresnel transmission coefficient      51—52
Fung, A.K.      16
Gain definitions of available      274 728
Gain definitions of maximum      274 728
Gain definitions of power      274 728—735
Gain definitions of transducer      273—274 728
Gain of klystron      685
Gain of parametric amplifier      813 815—820
Gain of travel ing-wave tube      698
Gastine, M.T      549
Gauss’ law      19
Gentile, C      798
Ghione, G.      176
Ginzton, E.L.      16
Gonzalez, G.      798
Gopinath, A.      368
Goubau, G.      549
Gradshteyn, T.S.      891
Group velocity in periodic structures      566—571
Group velocity in waveguide      204—205
GUden, M.      830
Guiliemm, K.A.      229 590
Guillon, P.      549
Gunn oscillator      832—837
Gunston, M.A.R.      160
Gupta, C      368
Gyrator      464—465
Gyrotron      701—708
H modes      98 100—102
H modes in circular guide      196—198
H modes in rectangular guide      182—192
Ha, T.T.      798
Hahn, W.C      663 712
Half-wave filter      360—370 617—626
Half-wave plate      405
Hamilton, D.R.      712
Hammerstad, E.O.      149 151
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå