Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Collin R.E. — Foundations for Microwave Engineerings
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Foundations for Microwave Engineerings
Àâòîð: Collin R.E.
Àííîòàöèÿ: "FOUNDATIONS FOR MICROWAVE ENGINEERING, Second Edition, covers the major topics of microwave engineering. Its presentation defines the accepted standard for both advanced undergraduate and graduate level courses on microwave engineering. An essential reference book for the practicing microwave engineer, it features:
Planar transmission lines, as well as an appendix that describes in detail conformal mapping methods for their analysis and attenuation characteristics
Small aperture coupling and its application in practical components such as directional couplers and cavity coupling
Printed circuit components with an emphasis on techniques such as even and odd mode analysis and the use of symmetry properties
Microwave linear amplifier and oscillator design using solid-state circuits such as varactor devices and transistors
FOUNDATIONS FOR MICROWAVE ENGINEERING, Second Edition, has extensive coverage of transmission lines, waveguides, microwave circuit theory, impedance matching and cavity resonators. It devotes an entire chapter to fundamental microwave tubes, in addition to chapters on periodic structures, microwave filters, small signal solid-state microwave amplifier and oscillator design, and negative resistance devices and circuits. Completely updated in 1992, it is being reissued by the IEEE Press in response to requests from our many members, who found it an invaluable textbook and an enduring reference for practicing microwave engineers.
ßçûê:
Ðóáðèêà: Òåõíîëîãèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: second edition
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 924
Äîáàâëåíà â êàòàëîã: 20.02.2006
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Rafuse, R.P. 830
Ragan, G.L. 397 479 548 592
Ramo, S. 219 712
Reactive elements in waveguide 339—343
Reactive elements in waveguide, shunt capacitive 341—342
Reactive elements in waveguide, shunt inductive 340—341
Reactive elements in waveguide, stubs as 342—343
Read, M.E. 712
Reciprocity theorem 62—64
Reflection coefficient for tapered transmission line 371
Reflection coefficient for tapered transmission line and Eiceati equation 383—386
Reflection coefficient for terminated transmission line 90
Reflection coefficient voltage 90
Reflection coefficient, current 91
Reflection from conducting plane 53—56
Reflection from dielectric surface parallel polarization 49—52
Reflection from dielectric surface perpendicular polarization 52—53
Reflection small, theory of 348—350
Reflex klystron 686—689
Reich, H.J. 712
Resistance radiation of probe in waveguide 281
Resistance radiation of transmission line 114
Resistance-wall amplifier 708
Resonant circuits bandwidth of 482—483
Resonant circuits damping of 484
Resonant circuits Q of 482—484
Resonant circuits transmission line antiresonant 488—4911
Resonant circuits transmission line open circuited 487—488
Resonant circuits transmission line short-circuited 485—187
Return loss 329
Rhode, U.L. 719 798 875
Rhodes, J.D. 647
Riblet, H.J. 393
Riccati equation for tapered transmission line 383—386
Ridge waveguide 205—207
Rigrod, W. 712
Ring circuit 437—442
Rizzi, P.A. 219
Rizzoli, V. 850
Roberts, J. 480
Rodrique, G.P. 476
Rosenbaum, F.J. 475 480
Row, H.E. 804
Ryzhik, T.M. 891
Scalar potential dynamic 56—59
Scalar potential static 28
Scattering matrix and transformation of terminal planes 249—250
Scattering matrix for lossless junction 251—253
Scattering matrix for power waves 268—276
Scattering matrix for transistor 843—849
Scattering matrix for two-port junction 254—257
Scattering matrix of circulator 471—476
Scattering matrix of directional coupler 414—416
Scattering matrix of hybrid junction 436—437 441
Scattering matrix symmetry of 250—251
Scattering matrix unitary property of 253
Schelkunoff, S.A. 218
Schloemann, E. 480
Schneider, M.V. 150
Schwarz, S.E. 70
Schwinger directional coupler 420
Senaiper, S. 585
Separation constant 45
Separation of variables method 44 183
Sheath helix 5811—583
Sheath helix in traveling-wave tube 693
Shen, L.C 70
Sheng, N.H. 717
Short circuit choke-type 397
Short circuit variable, in waveguide 395—397
Siater, J.C 548 647 712
Signal flow graphs 260—268
Signal velocity 200—204
Silverstein, J.D. 712
Skamik, J.K. 712
Skin depth 54
Skolnik, M.I. 16
Slot line 127
Smith chart 304—308
Snell’s law 50
Solymar, L. 393
Soohoo, R.P. 458 480
Space-charge reduction factor 659—660
Space-charge waves ac power relations for 667—670
Space-charge waves ac power relations for and kinetic voltage 670
Space-charge waves ac power relations for and kinetic-power theorem 670
Space-charge waves dc propagation constant for 656
Space-charge waves effective plasma frequency for 659—660
Space-charge waves fast and slow 658
Space-charge waves on axially confined beam 654—661
Space-charge waves on unfocused beam 661—667
Space-charge waves reduction factor for 659—660
Spangenberg, K.R. 650 672 712
Spatial harmonics in periodic structures 569—571
Sprangle, P. 712
Stability circles 736—744
Stability circles load 736
Stability circles source 739
Stability, of amplifier 735—744
Standing wave ratio 92
Standing waves, on transmission line 91—92
Static fields 28—30
Stratton, J.A. 70
Strip line 170—174
Strip line attenuation on 171—173
Strip line coupled 173—174
Strip line impedance of 171
Stub in waveguide 342—343
Stub matching with 309—319
Stub matching with double 312—317
Stub matching with single 309—312
Stub matching with triple 317—319
Stulzman, W.L. 16
Substrate, properties of 130
Surface impedance 56
Surface wave 124
Susceptibility electric 25
Susceptibility magnetic 27
Suskind, C 672 712
Symons, R.S. 703
TE waves 98 100—102
TEM waves 98—100
Termination, waveguide 394—397
Thiele, G.A 16
TM waves 98 102—104
Transducer gain 273—274 728
Transmission coefficient 51
Transmission line capacitively loaded 551—557
Transmission line capacitively loaded diagram for 564—566
Transmission line capacitively loaded Bloch waves in 556
Transmission line capacitively loaded characteristic impedance of 556
Transmission line capacitively loaded circuit analysis of 551—557
Transmission line capacitively loaded eigenvalue equation iov 554
Transmission line capacitively loaded wave analysis of 557—559
Transmission line distributed circuit analysis of 66—89
Transmission line field theory of coaxial line 106—108 111
Transmission line field theory of lossless line 106—108
Transmission line field theory of lossy coaxial line 111
Transmission line field theory of with small loss 111
Transmission line parallel-plate, with dielectric 117—1^5
Transmission line parameters of capacilance 112 117
Transmission line parameters of capacilance, characteristic impedance 113 117
Transmission line parameters of capacilance, coaxial line 115 117
Transmission line parameters of capacilance, conductance 115 117
Transmission line parameters of capacilance, inductance 115 117
Transmission line parameters of capacilance, resistance 116 117
Transmission line resonant circuit 485—490
Transmission line resonant circuit, antiresonant 488—490
Transmission line resonant circuit, open-circuited 487—488
Transmission line resonant circuit, short-circuited 485—487
Transmission line tapered, Chebyshev 380—383
Transmission line tapered, Chebyshev exponential 372
Transmission line tapered, Chebyshev reflection coefficient on, approximate equation 371
Transmission line tapered, Chebyshev reflection coefficient on, Riccati equation for 385
Transmission line tapered, Chebyshev synthesis of 373—380
Transmission line tapered, Chebyshev triangular 372—373
Transmission line terminated 89—96
Transmission matrix, for cascade network voltage-current 257—259
Transmission matrix, for cascade network wave-amplitude 259—260
Transverse resonance method 206—208
Traveling-wave tube M-type 699—701
Traveling-wave tube O-type 692—699
Traveling-wave tube O-type gain of 698
Traveling-wave tube periodic structures for 571—585
Troetschel, W.O. 703
Two-port junctions 238—243
Two-port junctions, equivalent circuits for 245—248
Uenohara, M. 823
Ulaby, V T. 16
Valter, G. 703
Van Bladel, J. 549
Van der Zeil, A. 799
Van Duzer, T. 219
Van Trier, A.A.Th.M. 465
Vartanian, P.H. 406
Vector formulas 876—880
Vector potential dynamic 56—59
Vector potential dynamic solution fur 59—62
Vector potential static 30
Velocity energy flow for plane waves 48
Velocity energy flow in periodic structures 566—571
Velocity energy flow in waveguides 204—205
Velocity group in periodic structures 566—571
Velocity in waveguides 200—204
Velocity modulation beam coupling parameter in 672
Velocity modulation, of electron beam 670—678
Velocity phase for plane waves 47—48
Velocity phase in waveguides 182
Velocity signal, in waveguides 199—204
Velocity wavefront, in waveguides 199
Velocity-jump amplifier 708
Vendelin, G.D. 719 798 875
Villeneuve, A.T. 63
Voltage standing wave ratio 91—93
Voltage, equivalent normalized 223
Voltage, equivalent, in waveguide 221—224
Wail, J.R 70
Watkins, D.A. 585 647
Watson, G.N. 885
Wave classification of 96—99
Wave equation 31
Wave impedance of TE mode 185 190
Wave impedance of TM mode TM mode 189
wave number 32
Wave plane 44—48
Wave plane reflection of, from conducting plane 53—56
Wave plane reflection of, from dielectric surface 49—53
Wave TE 98—102
Wave TEM 98—100
Wave TM 98 102—104
Wave transmission matrix 259—260 (see also “Periodic structures”; “Space-charge waves; Transmission line; Waveguide”)
Waveguide capacitive circular, attenuation in 196—197
Waveguide capacitive circular, solutions for 194—197
Waveguide capacitive circular, TE waves in 196—197
Waveguide capacitive circular, TM waves in 194—196
Waveguide capacitive diaphragm in 341—342
Waveguide capacitive post in 342
Waveguide capacitive rod in 342
Waveguide equivalent current and voltage for 221—224
Waveguide excitation of by aperture 284—294
Waveguide excitation of by current loop 283—284
Waveguide excitation of by linear current element 281—283
Waveguide inductive diaphragm in 340—341
Waveguide inductive post in 341
Waveguide properties of 180—182
Waveguide rectangular, attenuation in 188
Waveguide rectangular, cutoff frequency of 184
Waveguide rectangular, dominant TE mode in 190—194
Waveguide rectangular, power in 186—187
Waveguide rectangular, solutions for 189
Waveguide rectangular, TE waves in 182—190
Waveguide rectangular, TM waves in 193
Waveguide rectangular, wave impedance for 185 189 197
Waveguide ridge 205—207
Waveguide termination 394—397
Waveguide velocity in group 200—2(14
Waveguide velocity in phase 182
Waveguide velocity in signal 199—204
Waveguide velocity in wavefront 199
Waveguide velocity in, energy 204—205
Weale, J.R. 150
Weinberg, L. 596
Wenzel, R.J. 647
Wheeler, H.A. 149
Whinnery, J.R. 219
Wilkinson, E. 443
Williams, A.E. 647
Wolff, E. 219
Wolff, I. 497 4U9
Wu, Y.S. 475 480
Yamashita, S. 647
Young, L. 346 360 364 393 434
Zitelli, I. 712
Ðåêëàìà