Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Collin R.E. — Foundations for Microwave Engineerings
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Foundations for Microwave Engineerings
Àâòîð: Collin R.E.
Àííîòàöèÿ: "FOUNDATIONS FOR MICROWAVE ENGINEERING, Second Edition, covers the major topics of microwave engineering. Its presentation defines the accepted standard for both advanced undergraduate and graduate level courses on microwave engineering. An essential reference book for the practicing microwave engineer, it features:
Planar transmission lines, as well as an appendix that describes in detail conformal mapping methods for their analysis and attenuation characteristics
Small aperture coupling and its application in practical components such as directional couplers and cavity coupling
Printed circuit components with an emphasis on techniques such as even and odd mode analysis and the use of symmetry properties
Microwave linear amplifier and oscillator design using solid-state circuits such as varactor devices and transistors
FOUNDATIONS FOR MICROWAVE ENGINEERING, Second Edition, has extensive coverage of transmission lines, waveguides, microwave circuit theory, impedance matching and cavity resonators. It devotes an entire chapter to fundamental microwave tubes, in addition to chapters on periodic structures, microwave filters, small signal solid-state microwave amplifier and oscillator design, and negative resistance devices and circuits. Completely updated in 1992, it is being reissued by the IEEE Press in response to requests from our many members, who found it an invaluable textbook and an enduring reference for practicing microwave engineers.
ßçûê:
Ðóáðèêà: Òåõíîëîãèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: second edition
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 924
Äîáàâëåíà â êàòàëîã: 20.02.2006
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Hankel functions 881—885
Hankel functions spherical 510—511
Harrington, R.F. 63 144
Hartwig, C.P. 156
Harvey, A.P. 479 577
Haskal, H. 224
Haus, H.A. 668
Hayt, W.H., Jr. 70
Heilmeier.G.H. 830
Held, D.N. 875
Helix general properties of 583—585
Helix sheath 580—583
Helix sheath dispersion equation for 583
Helix sheath in traveling-wave tube 693
Helmholtz’s equation 32 97
Helmholtz’s theorem 19 525
HEMT transistor 722
Hensperger, E.S. 346
Heuer, H.J. 818
Hirshfield, J.L. 712
Homer, J.B. 712
Homo, M. 430
Honey, R.C. 830
Hopfer, S. 207 209
Howe, H. 130 173
Hutter, R.G.E. 576 712
Hybrid junction as balanced mixer 865—866
Hybrid junction branch line coupler as 432—434
Hybrid junction magic T as 435—437
Hybrid junction ring circuit as 437—442
Hybrid junction scattering matrix for 436—437 441
Image parameters of filters 587—590
IMPATT oscillator 837—840
Impedance characteristic of capacitively loaded transmission line 556
Impedance characteristic of coaxial line 115
Impedance characteristic of coplanar line 176—178
Impedance characteristic of microstrip line 150—153
Impedance characteristic of strip line 171
Impedance characteristic of transmission line 76
Impedance general definition of 38
Impedance input, even and odd properties of 232—233
Impedance input, on transmission line 93
Impedance inverters in filters 603—615
Impedance matching, with lumped elements 319—330
Impedance matching, with lumped elements with stubs 309—319 (see also “Quarter-wave transformers”; “Transmission line tapered”)
Impedance matrix imaginary property of 236—237
Impedance matrix symmetry of 235—236
Impedance mismatch factor 334
Impedance mismatch factor, invariance of 334—339
Impedance normalized 90 ‘237—238
Impedance of waveguide elements 339—342
Impedance surface 56
Impedance termination, design of 330—334
Impedance wave for circular guide 196—197
Impedance wave for TE waves in rectangular guide 185 190
Impedance wave for TM waves in rectangular guide 189
Inductance.disributed for transmission line 72—73
Inductor, for microsirip circuits 320—322
Insertion loss in filters 591—592
Interdigital line 577—579
Ishii, T.K. 219
Isolator 466—468
Ivanek, F. 16
Jackson.R.W. 179
Jahnke, E. 395
James.D.S. 500
Johnk, C.T.A. 70
Johnson noise 762
Johnson, R.C 393
Jones, E.M.T. 364 434 830
Kajfez, D. 549
Kales, M.L. 465
Kaul, R. 210
Kerns, D.M. 302
Kerr, A.R. 875
Kinetic power theorem for electron beam 670
Kinetic voltage 670
Kleen, W.J. 712
Klopenstein, R.W. 393
Kluever, J.W. 668
Klystron reflex electronic admittance in 6B6
Klystron reflex oscillation conditions for 688
Klystron reflex tuning curves for 688—689
Klystron reflex two-cavity 678—686
Klystron reflex two-cavity equivalent circuit for 684—685
Klystron reflex two-cavity excitation of fields in 683—686
Klystron reflex two-cavity gain of 685
Knight, S.P. 322
Knipp, J.K. 712
Knoppik, N. 497 499
Kobayshi, M. 162
Kollberg, E.L. 875
Komatsu, Y. 515
Kong, J.A. 70 149
Kotzebue, K.L. 830
Kratis, J.D. 16 70
Krauss, H.L. 712
Kuhn, N. 264
Kurokawa, K. 268 549
Lange, J. 434
Laplace’s equation 29
Larmor frequency 452
Laverghetta, T. 130
Lax, B. 480
Lewin, L. 340 342 902
Lewis, J. 712
Li, Q.F. 712
Liboff.R.L. 219
Liechti, C.H. 717
Lorentz condition 57 133
Lorentz force 17—18
Lorentz reciprocity theorem 62—64
Loss tangent 26
Magic T 435—437 865—868
Magnetic permeability 13 27
Magnetic permeability for ferrite 455 457—459
magnetic susceptibility 27
Magnetron 690—692
Makimoti, M. 647
Malherbe, J.A.G. 647
Manley, J.M. 804
Manley-Rowe relations 804—807
Marcuvitz, N. 207 302 339—340 479 552
Mason, S.J. 261
Mass, S.A. 875
Masse, D.J. 156
Matching network design of for amplifier 330—334 338—339
Matching network lumped element 319—330
Matching network lumped element Q of 325—330
Matching network lumped element with transmission line stubs 309—3
Matsumaru, K. 393
Matthaei, G.L. 364 434 630 830
Matthews, H. 647
Maxwell’s equations 21
McDonald, N.A 286
McLachlan, N.W. 885
Meander line 577—579
Medina, V. 430
Meixner, J. 43
Melchor, J.L. 456
MESFET 721
MIC circuit 714
Microstrip line 125—128 130—169
Microstrip line, attenuation of 153—157 163—164
Microstrip line, coupled 164—170
Microstrip line, dispersion in 158—11
Microstrip line, effective dielectric constant for 149—152
Microstrip line, impedance of 150—153
Microstrip line, inverted-suspended 126—127
Microstrip resonator 490—496
Microstrip resonator, disk 496—500
Microstrip resonator, disk Q of 499
Mihran, T.G. 660
Mixer 856—868
Mixer, balanced 865—868
Mixer, compression in 862—863
Mixer, harmonic balance method for 869—873
Mixer, image-enhanced 868
Mixer, image-rejection 868
Mixer, intermodulation in 863—864
Mixer, noise figure 864—865
Mixer, subharmonic 868
MMIC circuits 714
Mobbs.C.I. 647
Mode chart for cylindrical cavity 507
Montgomery, C.G. 16 220 245 302 416 479 548
Moore, R.K. 16
Morich, M. 166
Moynihan, R.L. 449
Mumford, W.W. 636
Murakami, Y. 515
N-port circuits 233—235
Nakatani, A. 180
Naldi, C U. 176
Negative-resistance amplifier 814-S21
Nelson, J. 500
Noise, conductance equivalent 767
Noise, conductance equivalent temperature of 762
Noise, conductance figure 768—773
Noise, conductance figure circles for 772—776
Noise, conductance figure of cascaded stages 770—772
Noise, conductance figure of mixer 664—865
Noise, conductance figure of parametric amplifier 821—829
Noise, conductance figure optimum source impedance for minimum 769—770
Noise, conductance in two-parts 766—767
Noise, conductance Johnson or Nyquist 762
Noise, conductance resistance, equivalent 767
Noise, conductance temperature of amplifier 771
Noise, conductance temperature of system 771—772
Noise, conductance theory of 760—765
Normalised load impedance 90
Normalized current 223
Normalized voltage 223
O-type traveling-wave tube 692—699
Okress, E.C 16
Ordung, P.F. 712
Oscillators Gunn 832—837
Oscillators IMPATT diode 837—840
Oscillators three-port scattering matrix for 843—849
Oscillators transistor 840—856
Oscillators, design of 851—856
p-n junction diode 800—802
Pannenborg, A.E. 302
Parad, L.L 449
Parallel plate transmission line 117—125
Parametric amplifier linearized equations for 807—809
Parametric amplifier Manley — Rowe relations for 804—807
Parametric amplifier negative resistance 814—821
Parametric amplifier negative resistance gain of 815—820
Parametric amplifier negative resistance gain-bandwidth product far 821
Parametric amplifier negative resistance noise in 823—825
Parametric amplifier noise figure of degenerate negative resistance 825—829
Parametric amplifier noise figure of negative resistance 823—825
Parametric amplifier noise figure of up-converter 821—823
Parametric amplifier p-n junction diodes for 800—802
Parametric amplifier up-converter 809—814
Parametric amplifier up-converter gain of 813
Park, S.Y. 712
Pavio, A.M. 719 798 875
Penfield, P. 830
Pengelley, R.S. 722 798
Periodic structures and filters 587—590
Periodic structures for traveling-wave tube helix, general properties of 583—585
Periodic structures for traveling-wave tube interdigitai line 577—579
Periodic structures for traveling-wave tube meander line 577—579
Periodic structures for traveling-wave tube sheath helix 580—583
Periodic structures for traveling-wave tube tape ladder line 577—578
Periodic structures for traveling-wave tube, corrugated plane 571—577
Periodic structures unsymmetrical two-ports in 559—560
Periodic structures, diagram for 564—566
Periodic structures, Bloch waves in 556
Periodic structures, Bloch-wave impedance for 555—556
Periodic structures, energy flow velocity in 566—571
Periodic structures, Floquet’s theorem for 569—57]
Periodic structures, group velocity in 566—571
Periodic structures, matching of 563—564
Periodic structures, spatial harmonics in 569—571
Periodic structures, terminated 560—563
Permeability 18 27
Permeability for ferrite 455 457—459
Perveance of electron heam 650
Phase shifter, electronnic 409—413
Phase shifter, rotary 404—409
phase velocity 47 198—199
Phase velocity in waveguides 182
Physical constants 911—912
Pierce, J.R. 650 653 712
Pierpont, J. 229
PIN diode 401—403
Plane waves 44—48
Plasma frequency 653
Plasma frequency effective 659
Poh, S.Y. 149
Poisson’s equation 29
Polarization circular 405—407 452
Polarization in dielectric 23—27
Polarization of circular aperture 285
Post capacitive in waveguide 342
Post inductive, in waveguide 341
Potential scalar, dynamic 57
Potential scalar, static 28
Potential vector, dynamic 57
Potential vector, static 30
Power added efficiency 842
Power divider 442—450
Power divider Wilkinson 443—450
Power for TE waves in rectangular guide 186 187
Power gain 274 728—735
Power loss ratio in filter 591—594
Power loss ratio in quarter-wave transformer 356—357
Power orthogonality in waveguides 185
Power waves, scattering matrix for 268—276
Power, in circular guide 197
Poynting vector 38—39
Poynting vector complex 37
Pozar, D.M. 219 479
Pratt, T. 16
Presser, A. 434
Probe, radiation resistance of, in waveguide 281
Pucel, R.A. 156
Pulse propagation on transmission line 78—85
Purcell, E.M. 220 245 302 416 479 548
Quality factor or Q 325 503—504
Quality factor or Q external 483
Quality factor or Q loaded 483
Quality factor or Q of cylindrical cavity 507
Quality factor or Q of dielectric resonator 513
Quality factor or Q of disk resonator 499
Quality factor or Q of matching network 325—330
Quality factor or Q of rectangular cavity 503—504
Quality factor or Q unloaded 483
Quarter-wave plate 405
Quarter-wave transformers Chebyshev, exact results 356—360
Quarter-wave transformers Chebyshev, three-section 359—360
Quarter-wave transformers Chebyshev, two-section 356—358
Quarter-wave transformers N-section binomial 350—352
Quarter-wave transformers N-section Chebyshev 352—356
Quarter-wave transformers N-section, approximate theory for 348—350
Quarter-wave transformers prototype circuit for filter 360—370
Quarter-wave transformers single-section 343—346
Ðåêëàìà