Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 97 |
Abell M., Braselton J. — Differential Equations with Mathematica | 93, 243 |
Bell W.W. — Special Functions for scientists and engineers | 42 |
Koepf W. — Hypergeometric Summation. An algorithmic approach to summation and special function identities. | 1, 22, 42, 101, 178 |
Abramowitz M., Stegun I. (eds.) — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table | 332, 486, 773, see orthogonal polynomials |
Bruce C.Berndt — Ramanujan's Notebooks (part 2) | 65—69 |
Apostol T.M. — Calculus (vol 1) | 571 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 145, 272 |
Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 146, 147 (see also "Legendre functions") |
Andrews G., Askey R., Roy R. — Special Functions | 252 |
Apostol T.M. — Calculus (vol 2) | 25, 174 |
Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in FORTRAN77 | 246, 1122 |
Chung T.J. — Computational fluid dynamics | 466—7, 635 |
Bathe K.-J. — Finite element procedures | 252 |
Abramowitz M., Stegun I. — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | 332, 486, 773; see “Orthogonal polynomials” |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 549, 748 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 549, 748 |
Wall H.S. — Analytic Theory of Continued Fractions | 344 |
Bulirsch R., Stoer J. — Introduction to numerical analysis | 155 |
Apostol T.M. — Mathematical Analysis | 336 (Ex. 11.7) |
Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 767 |
Hayek S.I. — Advanced mathematical methods in science and engineering | 71, 77, 81, 85 |
Latrve D.R., Kreider D.L., Proctor T.G. — Hp-48G/Gx Investigations in Mathematics | 86, 358ff |
Neta B. — Numerical solution of partial differential equations | 81 |
Schweizer W. — Numerical quantum dynamics | 161 |
Stein E. (ed.), Ramm E. — Error-controlled adaptive finite elements in solid mechanics | 264, 265 |
Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach | 255, 259, 260, 315 |
Barbeau E.J. — Polynomials: a problem book | 71, 407 |
Messer R. — Linear Algebra: Gateway to Mathematics | 171 |
Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 219, 444 |
Meyer C.D. — Matrix analysis and applied linear algebra | 319 |
Bini D., Pan V.Y. — Polynomial and matrix computations. Fundamental algorithms. Vol.1 | 55 |
Handscomb D.C. — Methods of numerical approximation | 37, 44 |
Olver F.W.J. — Asymptotics and Special Functions | 48 (see also “Ferrers functions, Legendre functions”) |
Dingle R. — Asymptotic Expansions: Their Derivation and Interpretation | 45, 47, 71, 72 |
Abell M.L., Braselton J.P. — Mathematica by Example | 246, 247 |
Weinberger H.F. — First course in partial defferential equations with complex variables and transform methods | 191, 192, 193 |
Liboff R. — Kinetic Theory | 229 |
Hayman W.K. — Multivalent Functions | 231 |
Helgaker T., Jorgensen P., Olsen J. — Molecular Electronic-Structure Theory. Part 2 | 207 (see also “Orthogonal polynomials”) |
Miklowitz J. — The theory of elastic waves and waveguides | 562—565 |
Harmuth H.F. — Sequency theory: foundations and applications | 23 |
Polya G., Szego G. — Problems and Theorems in Analysis: Integral Calculus. Theory of Functions | III 157, III 219, 135, 147 |
Dill K.A., Bromberg S. — Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology | 204 |
Leach A.R. — Molecular Modelling Principles and Applications | 32 |
Balser W. — Formal power series and linear systems of meromorphic ordinary differential equations | 5 |
Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 7, 61 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 100, 102, 254, 376 |
Lorentzen L., Waadeland — Continued fractions and applications | 334, 442 |
Bogachev V.I. — Measure Theory Vol.1 | 259 |
Borwein P, Erdelyi T — Polynomials and polynomial inequalities | 57 |
Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 172 |
Willers A. — Practical Analysis | 187, 243, 319, 323 |
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 15 |
Comtet L. — Advanced Combinatorics. The Art of Finite and Infinate Expansions | 50, 87, 164 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 149 |
Jackson D. — Fourier Series and Orthogonal Polynomials | 45—68, 213—216 |
McMano D., Topa D.M. — A Beginner's Guide to Mathematica | 487—494 |
Rainville E.D. — Special Functions | 130—132, 157—186, 191, 194—196, 199, 208, 215—216, 232, 244, 247—248, 251—253, 276—277, 284, 287—288, 290—291, 303 |
Khuri A.I. — Advanced calculus with applications in statistics | 440, 442 |
Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed) — Partial Differential Equations I: Foundations of the Classical Theory | 144 |
Delves L.M. (ed.), Walsh J. (ed.) — Numerical Solution of Integral Equations | 19, 22, 88, 137, 203, 323 |
Gasper G., Rahman M. — Basic hypergeometric series | 2 |
Eubank R.L. — Nonparametric regression and spline smoothing | 76 |
Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | V 58 44, V 120 56, 85, VI 87 86, VI 88 86, VI 91 87, VI 92 87, VI 95 87, VI 96, 97 87, VI 87 270 |
Agarwal R.P., O'Regan D., Grace S.R. — Oscillation Theory for Difference and Functional Differential Equations | 13 |
Turnbull H.W. — An Introduction to the Theory of Canonical Matrices | 102 |
Planck M. — Introduction to Theoretical Physics | 158 |
Galindo A., Pascual P. — Quantum Mechanics Two | I 301 |
Menzel D.H. — Mathematical Physics | 174 |
Collins G.W. — Fundamentals of Stellar Astrophysics | 177, 215, 269 |
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 39 |
Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 344, 384 |
Konopinski E.J. — Electromagnetic fields and relativistic particles | 72—73, 83, see also Associated Legendre functions |
van Eijndhoven S.J.L., de Greef J. — Trajectory Spaces, Generalized Functions and Llnbounded Operators | 66 |
Lay D.C. — Linear Algebra And Its Applications | 393 |
Dieudonne J. — Foundation of Modern Analysis | 6.6 and 8.14, prob. 1 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 159 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 178 |
Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 571 |
Ting L., Klein R. — Viscous Vortical Flows (Lecture Notes in Physics) | 12 |
Bhagavantam S., Venkatarayudu T. — Theory of Groups and Its Application to Physical Problems | 64, 256 |
Friedman M., Kandel A. — Introduction to pattern recognition | 52 |
Stakgold I. — Green's Functions and Boundary Value Problems | 271, 286 |
David H., Nagaraja H. — Order Statistics (Wiley Series in Probability and Statistics) | 51, 71—73 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 97 |
Erdelyi A. — Higher Transcendental Functions, Vol. 1 | 120, 150 |
Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applications | 22, 28, 46, 393, 396 |
Weir A.J. — Lebesgue Integration and Measure | 200, 202 |
Goldber M.A. (ed.) — Numerical Solution of Integral Equations | 77 |
Bogachev V.I. — Measure Theory Vol.2 | I: 259 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 7.17, 13.0, 13.2, 20.7 |
Barber J.R. — Elasticity | 298, 303, 308 |
Povey M.J. — Ultrasonic Techniques for Fluids Characterization | 111 |
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 84 |
Erdelyi A. — Higher Transcendental Functions, Vol. 3 | see “Polynomials” |
Mishchenko M.I. — Scattering, Absorption, and Emission of Light by Small Particles | 360, 365 |
Galindo A., Pascual P. — Quantum Mechanics One | 301 |
Natterer F. — The Mathematics of Computerized Tomography (Classics in Applied Mathematics) | 194 |
Tricomi F.G. — Integral equations | 99 |
Jackson J.D. — Classical electrodynamics | 56, see also “Spherical harmonics” |
Young R.M. — An Introduction to Nonharmonic Fourier Series | 15 |
Cercignani C. — Theory and Application of the Boltzman Equation | 182, 353 |
Marden M. — The geometry of the zeros of a polynomial in a complex variable | 30 |
Bethe H.A., Salpeter E.E. — Quantum Mechanics of One-and-Two-Electron Atoms | 344—348 |
Shohat J. — The problem of moments | 90, 124 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 17 |
Aldrovandi R. — Special matrices of mathematical physics (stochastic, circulant and bell matrices) | 178 |
Erdelyi A. — Higher Transcendental Functions, Vol. 2 | 164, 178 ff. |
Park D. — Introduction to the quantum theory | 635 |
Pomraning G.C. — The equations of radiation hydrodynamics | 18 |
Pipes L.A. — Applied Mathemattics for Engineers and Physicists | 323 |
Hamming R.W. — Numerical methods for scientists and engineers | 455 |
Stratton J.A. — Electromagnetic Theory | 173 |
Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 366 |
Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 516 |
Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | see also “Legendre functions”, 146, 147 |
Bernstein R.B. — Atom-Molecule Collision Theory: Guide for the Experimentalist | 547, 548, 550 |
Evans G.A., Blackledge J.M., Yardley P. — Analytic Methods for Partial Differential Equations | 18 |
Wong K. — Asymptotic Approximations of Integrals | 141, 146, 420 |
Rogosinski W. — Fourier Series | 7, 14, 57 |
Egorov Y.V., Shubin M.A. — Partial Differential Equations I (Foundations of the Classical) | 144 |
Carrol B.W., Ostlie D.A. — An introduction to modern astrophysics | 780 |
Mehta M.L. — Random Matrices | 137, 518 |
Antia H.M. — Numerical Methods for Scientists and Engineers | 59, 188, 198, 340, 594, 595, 610, 747 |
Wawrzynczyk A. — Group representations and special functions | 208—236, 237, 240, 279, 281, 341, 657, 664 |
Greiner W. — Classical electrodynamics | 79 |
Kreyszig E. — Advanced engineering mathematics | 179, 207, 590, 826 |
Simmons G.F. — Introduction to topology and modern analysis | 259 |
Butcher J. — Numerical Methods for Ordinary Differential Equations | 198 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 139 |
Bates D.R. — Quantum Theory | 99, 139 |
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 54 |
Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 174 |
Luke Y.L. — The special functions and their approximations (volume 1) | 273, 279 |
Houston W.V. — Principles of Mathematical Physics | 42 |
Conway J.B. — A Course in Functional Analysis | 18 |
Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (1)324, (2)408 |
Cotterill R.M.J. — Biophysics: An Introduction | 357 |
Steeb W.-H. — Problems and Solutions in theoretical and mathematical physics. Volume 1. Introductory level | 181, 190 |
Luke Y.L. — Mathematical Functions and Their Approximations | 434, 436 |
Saxe K. — Beginning functional analysis | 78 |
Rose M.E. — Elementary theory of angular momentum | 74, 239 |
Beutler G. — Methods of Celestial Mechanics: Volume I: Physical, Mathematical, and Numerical Principles | I 81, 102, 244, 319 |
Dieudonne J. — Foundation of Modern Analysis | 6.6, 8.14, prob. 1 |
Baker G.A. — Essentials of Padé Approximants in Theoretical Physics | (see Orthogonal polynomials) |
Curle N., Davies H. — Modern Fluid Dynamics. Volume 1. Incompressible flow | 93 |
Thompson W.J. — Computing for Scientists and Engineers: A Workbook of Analysis, Numerics, and Applications | 187 |
Bayin S.S. — Mathematical Methods in Science and Engineering | 18 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 6, 179, 377 |
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 319 |
Mott N.F. — Elements of Wave Mechanics | 19 |
Tauxe L. — Paleomagnetic principles and practice | 12 |
Landau L.D., Lifshitz E.M. — The classical theory of fields | 106 |
Blanchard P., Devaney R.L. — Differential Equations | 743 |
Rektorys K. — Survey of applicable mathematics | 722-6, 849 |
Simmons G.F. — Differential Equations with Applications and Historical Notes | 155, 221 |
Grenander U. — Toeplitz Forms and Their Applications | 82 |
Nicholson W.K. — Linear Algebra with Applications | 436 |
Snyder M.A. — Chebyshev methods in numerical approximation | 6, 7 |
Ohanian H.C. — Classical Electrodynamics | 90, 96 |
Macrobert T.M. — Functions of a complex variable | 99, 214, 235 |
Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in Fortran 90 | 246, 1122 |
Bellman R.E., Dreyfus S.E. — Applied Dynamic Programming | 324 |
Nouredine Z. — Quantum Mechanics: Concepts and Applications | 289 |
Marks R.J.II. — The Joy of Fourier | 8, 42, 43, 46, 53, 72, 73, 94, 101 |
Smith P.A., Eilenberg S. — Pure and Applied Mathematics | 129 |
Jordan C. — Calculus of Finite Differences | 389, 434 |
Mott N.F., Sneddon I.N. — Wave Mechanics and Its Applications | 55, 980 |
Kreyszig E. — Introductory functional analysis with applications | 176 |
Bellman R.E. — Some vistas of modern mathematics: Dynamic programming, invariant imbedding, and the mathematical biosciences | 82 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 93, 334 |
Shilov G.E. — An introduction to the theory of linear spaces | 163—167, 194, 268 |
Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 82—87, 402 |
Singer I. — Bases in Banach spaces II | 787 |
White H.E. — Introduction To Atomic Spectra | 61 |
Rainville E. D. — Intermediate Course in Differential Equations | 160, 185 |
Abell M.L., Braselton J.P. — Differential equations with Mathematica | 93, 243 |
Rice J.R. — Linear Theory. Volume 1. The approximation of functions | 36, 39, 47 |
Aliprantis C. — Principles of real analysis | 295 |
Stratton J.A. — Electromagnetic Theory | 173 |
Beard D.B. — Quantum Mechanics | (see Associated Legendre functions) |
Hamming R.W. — Numerical Methods For Scientists And Engineers | 56, 240 |
Dym H., McKean H.P. — Fourier Series and Integrals | 26, 242, 245—249 |
Vladimirov V. S. — Equations of mathematical physics | 335 |
Fluegge S. (ed.) — Encyclopedia of physics. Vol. 9. Fluid dynamics III | 479, 671 |
Morse P.M. — Methods of theoretical physics | 549, 748 |
Kemble E. C. — The fundamental principles of quantum mechanics | 143—145, 583 |
McBride E.B. — Obtaining Generating Functions | 3, 81 |
Bransden B., Joachain C. — Physics of Atoms and Molecules | 84—6, 615 |
Bhatia R. — Fourier Series (Mathematical Association of America Textbooks) | 83 |
Stakgold I. — Green's functions and boundary value problems | 271, 286 |
Donoghue W.F. — Distributions and Fourier transforms | 172 |
Rektorys K. (ed.) — Survey of Applicable Mathematics | 722—726, 849 |
Koepf W. — Hypergeometric summation. An algorithmic approach to summation and special function identities | 1, 22, 42, 101, 178 |
Geddes K., Czapor S., Labahn G. — Algorithms for computer algebra | 141 |
Dunkl C.F., Xu Y. — Orthogonal Polynomials of Several Variables | 20 |
Coffey W.T., Kalmykov Yu.P., Waldron J.T. — The Langevin equation | 334, 387 |
Beard D.B. — Quantum Mechanics | see "Associated Legendre functions" |
Muller J.-M. — Elementary functions: algorithms and implementation | 23, 25 |
Zhang S., Jin J. — Computation of Special Functions | 78 |
Luke Y.L. — Special Functions and Their Approximations. Volume II | I, 273, 279 |
Bellman R. — Methods of nonlinear analysis (Vol. 2) | 228 |
Leighton R.B. — Principles of Modern Physics | 168, 169 |
Mandl F. — Quantum mechanics | 50—51 |
Virchenko N. — Generalized Associated Legendre Functions and Their Applications | 1 |
Braun M. — Differential Equations and Their Applications: An Introduction to Applied Mathematics | 195 |
Forschaw J.R., Ross D.A. — Quantum chromodynamics and the pomeron | 9, 11 |
Hildebrand F.B. — Advanced Calculus for Applications | 161 |
Wong R. — Asymptotic approximations of integrals | 141, 146, 420 |
Griffits D.J. — Introductions to electrodynamics | 138, 148 |
Krall A.M. — Hilbert Space, Boundary Value Problems, and Orthogonal Polynomials | 243 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 370, 430 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 209 |
Ashby N., Miller S.C. — Principles of modern physics | 234 |
Koonin S.E., Meredith D.C. — Computational Physics-Fortran Version | 86, 93, 104 |
Greiner W. — Relativistic quantum mechanics. Wave equations | 263 |
Bates D.R. — Quantum Theory. I. Elements | 99, 139 |
Golberg M.A. — Numerical Solution of Integral Equations | 77 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 25, 174 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 264 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 705, II 74, II 137 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 229, 575 |
Ridley B.K. — Quantum Processes in Semiconductors | 384 |
Natterer F., Wubbeling F. — Mathematical methods in image reconstruction | 6 |
Smith R. — Smart material systems: model development | 379 |
Constantinescu F., Magyari E. — Problems in quantum mechanics | 396 |
Hartree D.R. — The calculation of atomic structures | 46 |
Farina J.E.G. — Quantum theory of scattering processes | 9—11 |
Dolan T.J. — Fusion Research: Principles, Experiments and Technology | 780 |
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 26, 242, 245—249 |
Slater J., Frank N. — Introduction to Theoretical Physics | 158 |
Kirk J., Melrose D., Priest E. — Plasma astrophysics | 30, 140 |
Demidovich B.P., Maron I.A. — Computational Mathematics | 611 |
Landau L.D., Lifshitz E.M. — Course of Theoretical Physics (vol.3). Quantum Mechanics. Non-relativistic Theory | 656—659 |
Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 222 |
Balser W. — Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations | 5 |
Sommerfeld A. — Partial Differential Equations in Physics | 129 |
Abramowitz M., Stegun I.A. (eds.) — Handbook of mathematical functions (without numerical tables) | 332, 486, 773, see "Orthogonal polynomials" |
Zorich V.A., Cooke R. — Mathematical analysis II | 504, 516, 623 |
Cheney W. — Analysis for Applied Mathematics | 76, 77, 377 |
Zorich V. — Mathematical Analysis | 504, 516, 623 |
Young D.M., Gregory R.T. — A Survey of Numerical Mathematics, Volume 2 | 321, 325, 402—408 |
Park D. — Introduction to the Quantum Theory (Pure & Applied Physics) | 635 |
Stakgold I. — Boundary value problems of mathematical physics | 123, 130, 319 |
Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (1)324, (2)408 |
Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 516 |
Jackson J.D. — Classical electrodynamics | 97, see also "Spherical harmonics" |
Apostol T. — Mathematical Analysis, Second Edition | 336 |
Brezinski C. — History of Continued Fractions and Padé Approximants | 204 |
Dennery P., Krzywicki A. — Mathematics for Physicists | 208, 213—214, 316, see also "Legendre functions", "Spherical harmonics" |
Daniels R.W. — Introduction to numerical methods and optimization techniques | 138 |
Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 124, 159 |
Srivastava H.M., Manocha H.L. — A Treatise on Generating Functions | 9, 16, 71—73, 239, 403, 409, 423, 453 |
Proskuryakov I.V. — Problems in Linear Algebra | 215 |
Geddes K.O., Czapor S.R., Labahn G. — Algorithms for computer algebra | 141 |
Helander P., Sigmar D.J. — Collisional Transport in Magnetized Plasmas | 52 |
Liboff R.L. — Introductory quantum mechanics | 330, 336 |
D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 60 |