|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Hayman W.K. — Multivalent Functions |
|
|
Предметный указатель |
, 73
38
, 84
71
1 162
215
, 230
161 230
243
221 247
200
208
26
61
, , 237
216
61
128
243
26 243
, 86
210
95 161
20
240
239 242
207
215 237
237
39
9
109
11
27 67
147
144
29
, 231
, 126
131
19
36
200
78
208
69
117
9 45 50 150
64
18
42
45
20
104
55 66 200 209
, 209
79
20 33 163
200
19
20
82
, the gamma function 26 151
, 207
210
207
235
143
137
141
1
6 149
82 197 204
82
33 172 180
28
77 107 169
51
109 243
117
119
242
209
30
, 51
2-point estimate 176
A(p), 66
A(p,b,c) 100
A(p,k,N) 99
A(r,f) 27
Admissible domain 109
Analytic domain 104
Areally mean (a. m.) p-valent 144
Argument of f(z) 224
Argument of f’(z) 226
Asymptotic behaviour 19 60 154 155
Asymptotic behaviour of coefficients 15 64 151 156
Averaging assumptions 19 37 144
B 136
Bieberbach’s conjecture xi 4 230
Bloch functions 143
Bloch’s constant 136
Bloch’s theorem 136
Bounded univalent functions 78
| C, , ,... 172
C. A. x 7 103
Circumferentially mean (c. m.) p-valent 144
Coefficients of univalent functions 9 15 247
Coefficients of univalent functions, of mean p-valent functions 65 131
Condenser, capacity of a condenser 109
Connectivity 104
Convex domain 11
Convex function 70
Convex univalent functions 11 12
Correspondence of points under a transformation 200
D, 115
de Branges’ theorem xi 230
Dense subclass 197
Diameter 199
Dirichlet’s minimum principle 109
Dirichlet’s minimum principle, problem of Dirichlet 108
Distortion theorems 4 28
Domain 104
Functions of maximal growth 16 17 45
Functions of maximal growth with k-fold symmetry 95 159 185
Functions of maximal growth without zeros 145 159
Functions of maximal growth, zero at the origin 61 64 148 158 165
G(R) 77 170
G(t) 207
g(z,t) 210
Gauss’ formula 105
Goodman’s conjecture xi 163
Green’s formula 106 169
Green’s function 122
H(R) 37
h(z, t’,t") 208
I(E) 84
I(z) 239
Inner radius 124
Inverse function 222
k-symmetric 95 185
Koebe function 2
l(R) 29 199
Landau’s theorem 143
Lebesgue integral 31
Legendre polynomials 231
Legendre polynomials, associated Legendre functions 231
Legendre’s addition theorem 232
Length-area principle 29
Lipschitzian, Lip 104
Lowner’s differential equation 197
M(r,f) 8 33
Major arc 16 19 154
Maximal growth 45
Mean p-valent xi 38 64 165
Milin’s conjecture 230 236
Minor arc 16 21 153
Modules, theory of xi 229
Modulus of continuity 116
Modulus of doubly connected domain 110
n(r, w) 67
n(w) 29 144
O, 113
Odd univalent functions 161 186 248
Omitted values 3 94 150
Order (of f(z) at ) 42
P(R) 29 67 144
p(r, R) 67
p-valent xi 1 28 163
Power series 243
Power series with gaps 98 99 101
Principal frequency 103
Radius of convexity 226
Radius of greatest growth (r. g. g.) 17 48
Radius of starshapedness 227
Real coefficients 13 162 220
Regularity theorems xi 16 49 150
Riemann’s mapping theorem 44 204
Robertson’s conjecture 249
Rogosinski’s conjecture 250
Rouche’s Theorem 147
S 22 36
S(R) 22
Schwarz’s inequality 30
Schwarz’s lemma 11
Schwarz’s reflection principle 44
Slit 204
Slit, sectionally analytic slit 198
Starlike domain 14
Starlike univalent function 14 188
Steiner symmetrization 112
Stolz angle 22
Subordination 250
Symmetrization 112
Symmetrization of condensers 119
Symmetrization of functions 116
Symmetrization, circular or Polya’s 113
Symmetrization, principle of 127
Szego’s conjecture 95
Torsional rigidity 103
Transfinite diameter 103
Transformation 200
Transformation, infinitesimal transformation 203
Typically real 13
Univalent xi 1
Variational method xi 229
Vitali’s convergence theorem 21
W(R) 37 76
[B] for Burkill [1951] 31
|
|
|
Реклама |
|
|
|