Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Erdelyi A. — Higher Transcendental Functions, Vol. 3
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Higher Transcendental Functions, Vol. 3
Àâòîð: Erdelyi A.
Àííîòàöèÿ: The Bulletin of the London Mathematical Society hailed this three-volume series as "The most widely cited mathematical works of all time and a basic reference source for generations of applied mathematicians and physicists throughout the world." Working from extensive notes on familiar special functions by the renowned mathematician Harry Bateman, a team of editors not only finished Bateman's original project but also made significant advances in mathematical analysis. The books, which can be used independently of each other, consist of Volume 1, which focuses on hypergeometric series; Volume 2, an exploration of Bessel functions, orthogonal polynomials, and elliptic functions and integrals; and Volume 3, an examination of automorphic functions, spheroidal and ellipsoidal wave functions, and other functions.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1955
Êîëè÷åñòâî ñòðàíèö: 301
Äîáàâëåíà â êàòàëîã: 13.07.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Absolute invariant 17 ff.
Accessory parameter 57
Algebraic numbers 167
Almost all, almost no 175
Appell polynomials see “Polynomials”
Arithmetical differentiation 172
Arithmetical functions 169
Arithmetical functions, asymptotic behavior of 174 ff.
Arithmetical functions, explicit expressions for 169 ff.
Arithmetical functions, general theorems on 175
Arithmetical functions, generating functions of 169 ff.
Arithmetical functions, properties of 171 ff.
Arithmetical functions, relations for 171 ff.
Arithmetical integration 172
Automorphic forms 30 ff.
Automorphic forms, metrization of 31
Automorphic functions 1 ff. 7
Automorphic functions of groups of parabolic substitutions 12 ff.
Automorphic functions of infinite cyclic groups 14 ff.
Automorphic functions of several variables 12 35
Automorphic functions of subgroups of the modular group 21 ff.
Automorphic functions of the icosahedral group 11
Automorphic functions of the lambda-group 22 ff.
Automorphic functions of the modular group 17
Automorphic functions, Burnside’s 35
Automorphic functions, general theorems for 27 ff.
Automorphic functions, Siegel’s 36 ff.
Automorphic functions, simple 9
Automorphic functions, Whittaker’s 34
Bernoulli numbers 189 241 252 257 260
Bernoulli polynomials see “Polynomials”
Bessel polynomials see “Polynomials”
Binomial polynomials see “Polynomials”
Character (mod m), imprimitive 194
Character (mod m), primitive 194
Character (mod n) 193 ff.
Character (mod n), principal 193 ff.
Charlier polynomials see “Polynomials”
Circulant 214
Confluent hypergeometric functions 251 261 275
Congruence 175
Coordinates of confocal cones 48 ff.
Coordinates of confocal cyclides of revolution 50 ff.
Coordinates of confocal elliptic and hyperbolic cylinders 91 ff.
Coordinates of confocal quadrics 44 ff.
Coordinates, ellipsoidal 46 ff. 96
Coordinates, oblate spheroidal 95 ff.
Coordinates, prolate spheroidal 93 ff.
Coordinates, sphero-conal 49 ff. 73
Coprime 168
Cyclides of revolution, coordinates of 50 ff.
Cyclides of revolution, harmonics associated with 84 ff.
Darboux’s method 244
Decomposition 175
Dedelcind — Liouville formula see “Moebius’ inversion formula”
Discontinuous groups 5
Discontinuous groups, classification of 26 ff.
Discontinuous groups, fundamental regions of 5 ff.
Discontinuous groups, generators of 5
Discontinuous groups, limit points of 6
Divisors, number of 168
Eisenstein series 17 ff.
Ellipsoidal harmonics 48 69 73 8
Ellipsoidal harmonics, integral representations of 83
Ellipsoidal wave functions 91 ff. 97 159
Ellipsoidal wave functions, differential equation of see “Lame’s wave equation”
Ellipsoidal wave functions, integral equations for 162 ff.
Elliptic functions, Jacobian 45 ff. 51
Elliptic modular functions 16 ff.
Euler numbers 252
Euler polynomials see “Polynomials”
Euler product of 169
Euler’s function 168 193
Euler’s identities 176 ff.
Floquet’s theorem 99 119
Fuchsian equations 57 160
Gaussian sums 187 ff.
Gegenbauer function 275 ff.
Gegenbauer polynomials see “Polynomials”
Generalized Bessel polynomial see “Polynomials”
Generating function of an Appell set of polynomials 236 255 262
Generating function of Appell polynomials 256
Generating function of Bernoulli numbers 241 252
Generating function of Bernoulli polynomials 234 252
Generating function of Bessel coefficients 250 260
Generating function of Bessel functions 250 260
Generating function of Bessel polynomials 251 266
Generating function of Charlier polynomials 255
Generating function of Euler polynomials 252 ff.
Generating function of Fuler numbers 252
Generating function of Gegenbauer polynomials 246 ff. 262 265 271
Generating function of Hermite polynomials 242 249 263 266 269 272
Generating function of hypergeometric polynomials 247 ff. 251 255 264 266
Generating function of Jacobi polynomials 247 262 267 272
Generating function of Lagrange’s polynomials 267
Generating function of Laguerre polynomials 249 ff. 251 262 272
Generating function of Legendre functions 264 266
Generating function of Legendre polynomials 234 245 261 264 271
Generating function of parabolic cylinder functions 263
Generating function of Poisson — Charlier polynomials 255
Generating function of Stirling numbers 257
Generating function of Stirling polynomials 257 259
Generating function of Tchebycheff polynomials 231 245
Generating function, bilinear, of Gegenbauer polynomials 271
Generating function, bilinear, of Hermite polynomials 272
Generating function, bilinear, of Jacobi polynomials 272
Generating function, bilinear, of Laguerre polynomials 272
Generating function, bilinear, of Legendre polynomials 27
Generating functions 228 ff.
Generating functions and asymptotic representations 243 ff.
Generating functions and orthogonal polynomials 270 ff. (see also “Gegenbauer” “Hermite” “Jacobi” “Laguerre” “Legendre” “Polynomials”)
Generating functions and symbolic relations 240 ff.
Generating functions in number theory 169 ff. 245
Generating functions, bilinear 271 ff.
Generating functions, continuous 274 ff.
Generating functions, general theorems for 235 ff.
Group 167
Group of homographic substitutions 5
Group, alternating 9
Group, discontinuous see “Discontinuous groups”
Group, dodecahedral 9
Group, finite 9
Group, Fuchsian 26 32
Group, icosahedral 9
Group, Kleinian 27
Group, lambda- 22 34
Group, modular 16 ff. 34
Group, modular, Hilbert’s 35 ff.
Group, modular, of degree n 37 ff.
Group, modular, subgroups of the 21 ff.
Harmonic polynomials 83
Hermite polynomials see “Polynomials”
Heun functions 60 ff.
Heun functions, integral equations for 72
Heun polynomials 62
Heun’s equation 57 ff. 98
Hille — Hardy formula 272
Hill’s equation 133
Hill’s problem 133
Homographic substitution 2
Homographic transformation 2
Homographic transformation, elliptic 4
Homographic transformation, fixed points of 3 ff.
Homographic transformation, hyperbolic 4
Homographic transformation, loxodromic 4
Homographic transformation, parabolic 4
Hyper geometric polynomials see “Polynomials”
Hyperbolic functions of order n 206 212 216
Hypergeometric series 20 ff. 23 236 238 259 263 276
Jacobi polynomials see “Polynomials”
Jacobi’s identities 177 182
Jacobsthal’s sums 187
Jordan’s function J, (n) 168
Kloosterman’s sums 188
L-series 192 194
Lagrange’s polynomials see “Polynomials”
Lagrange’s theorem on four squares 182
Laguerre polynomials see “Polynomials”
Lame functions 44 ff. 61 63 97
Lame functions of imaginary periods 69 ff.
Lame functions of periods 2K and 4K 64 ff.
Lame functions of real periods 63 ff. 68
Lame functions of the second kind 67 ff.
Lame functions, algebraic 62 68 71 88
Lame functions, coexistence of 67 71
Lame functions, degenerate 74 ff.
Lame functions, doubly-periodic 71 ff. 81
Lame functions, finite see “Lame — Wangerin functions”
Lame functions, integral equations for 72 ff.
Lame functions, Legendre function expansions of 67 69
Lame functions, periodic 63 ff. 88
Lame functions, transformation formulas for 70
Lame functions, trigonometric expansions of 65 ff. 68
Lame polynomials 62 67 69 73 81
Lame polynomials, transformation formulas for 70
Lame wave functions 97
Lame wave functions of the first kind 161
Lame wave functions of the second and third kinds 163
Lame wave functions, characteristic curves for 161
Lame wave functions, orthogonal properties of 162
Lame — Wangerin functions 75 ff. 84 86 88
Lame — Wangerin functions, integral equations for 79 ff.
Lame — Wangerin functions, power series representing 77 ff.
Lame — Wangerin functions, series of exponentials representing 78 ff.
Lame’s equation 47 52 55 59 61 86
Lame’s equation, algebraic forms 56 ff.
Lame’s equation, asymptotic behavior of the characteristic values of h in 68
Lame’s equation, characteristic values of h in 63 ff.
Lame’s equation, degenerate cases of 74 ff.
Lame’s equation, imaginary transformation of 69 ff.
Lame’s equation, Jacobian form of 55
Lame’s equation, solutions of 62 ff.
Lame’s equation, trigonometric form of 56
Lame’s equation, Weierstrassian form of 56
Lame’s wave equation 97 159
Lame’s wave equation, power series expansions of solutions of 159 ff.
Lame’s wave equation, solutions of 159 ff.
Lame’s wave equation, subnormal solutions of 160
Laplace’s equation 45 ff. 49 80 83
Lattice points 196 ff.
Legendre polynomials see “Polynomials”
Legendre — Jacobi symbol 183 ff. 186 193
Legendre’s equation 134 234
Liouville’s function, 169
Mathieu functions 91 ff. 93 97 99 108 111
Mathieu functions of fractional order 114
Mathieu functions of the first kind 111 ff.
Mathieu functions of the second kind 119 ff.
Mathieu functions, addition theorem of 132
Mathieu functions, approximations to 125
Mathieu functions, asymptotic forms of 125 ff.
Mathieu functions, Bessel function expansions of 117 ff.
Mathieu functions, characteristic curves for 111
Mathieu functions, expansions in series of 132
Mathieu functions, expansions of, in series of parabolic cylinder functions 127 ff.
Mathieu functions, Fourier expansions of 115 ff.
Mathieu functions, infinite series involving 128 ff.
Mathieu functions, integral equations for 114 ff. 117
Mathieu functions, integrals involving 130 132
Mathieu functions, normalization of 111 ff.
Mathieu functions, orthogonal properties of 114 132
Mathieu functions, products of 129 ff. 133
Mathieu functions, symmetry properties of 113
Mathieu’s equation 75 92 97 134
Mathieu’s equation, algebraic 98
Mathieu’s equation, approximations to solutions of 105 ff.
Mathieu’s equation, associated 98
Mathieu’s equation, asymptotic forms of solutions of 106 ff.
Mathieu’s equation, characteristic exponent of 99 ff. 106
Mathieu’s equation, expansions of solutions of 100 ff. 103
Mathieu’s equation, integral equations satisfied by solutions of 109 ff.
Mathieu’s equation, integral relations for solutions of 107 ff. 110
Mathieu’s equation, modified 92 120
Mathieu’s equation, solutions of the first kind of 99 108 129
Mathieu’s equation, solutions of the third kind of 99 129
Mathieu’s equation, stability chart for 101
Mathieu’s equation, stable and unstable regions of 101
Mathieu’s equation, subnormal solutions of 107
Meissel’s formula 172
Mittag-Leffler’s function 206 ff. 215
Mittag-Leffler’s function , functions related to 211 ff.
Mittag-Leffler’s function , generalizations of 210 ff. 215
Modified Mathieu functions 120 ff.
Modified Mathieu functions of the first kind 93 120
Modified Mathieu functions of the second kind 120 ff.
Modified Mathieu functions of the third kind 93 122
Modified Mathieu functions, asymptotic forms of 122 125
Modified Mathieu functions, Bessel function expansions of 120 ff.
Modified Mathieu functions, integral equations for 124
Modified Mathieu functions, integral relations for 122 ff. 130
Modular equations 24 ff.
Modular forms 18 30 36 39 178
Modular functions see “Elliptic modular functions”
Modular functions of the nth degree 36 ff.
Modular group see “Group” “Modular”
Moebius’ function 169
Moebius’ inversion formula 171 ff.
Moebius’ inversion formula, generalizations of 172
Multiplicative functions 169 171 185
Multiplicative functions, completely 169
Multiply-periodic functions 12 ff.
Non-associative algebra 230
Normal solutions 52
Normal solutions of Laplace’s equation 47 49 86
Normal solutions of the wave equation 92 94 97 150
Number theory, functions of 167 ff.
Orthogonal polynomials see “Polynomials”
P-symbol 57 ff. 77
P-symbol, transformations of 58 ff.
Parabolic cylinder functions 263 275
Partitions 175 ff.
Partitions, asymptotic formulas for 178 ff.
Partitions, asymptotic theory of 211
Partitions, congruence properties of 178 ff.
Partitions, enumerating function of 176
Partitions, enumeration of 176
Partitions, generating functions for 176
Partitions, restricted 175
Partitions, theorems on 178
Partuto numerorum 189
Poisson — Charlier polynomials see “Polynomials”
Polynomials, Appell 256
Polynomials, Appell set of 235 ff. 255 261
Polynomials, Bernoulli 234 ff. 252 259
Polynomials, Bessel 251
Polynomials, binomial 248 ff. 258
Polynomials, Charlier 255 273
Polynomials, Euler 252 ff. 260
Polynomials, Gegenbauer 246 ff. 262 265 271 274
Polynomials, generalized Bessel 251 266
Polynomials, Hermite 240 242 249 256 263 266 267 269 271 274
Polynomials, hypergometric 247 ff. 251 255 264 266 273 “Jacobi” “Legendre
Polynomials, Jacobi 247 262 267 271 274
Polynomials, Lagrange’s 267
Polynomials, Laguerre 241 249 252 255 262 271 274
Polynomials, Legendre 234 240 245 262 264 271 274
Polynomials, orthogonal 238 (see also “Gegenbauer” “Hermite” “Jacobi” “Laguerre” “Legendre
Polynomials, Poisson — Charlier 255 273
Polynomials, Stirling 257 259
Polynomials, Tchebycheff 231 ff. 245
Ðåêëàìà