|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Baker G.A. — Essentials of Padé Approximants in Theoretical Physics |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Acceleration of convergence of sequence 108—109
Arms’ and Edrei’s theorem 257—259
Baker — Gammel — Wills conjecture 188—189
Baker’s corollary 181
Beardon’s theorem 184—185
Beardon’s theorem for [L/1] 156
Bernstein’s Theorem 266
Bessel function 70—71
Bigradients 58 61
Bounds to averages 250—251
Bounds to averages on distribution functions 248—251
Capacity 192
Carleman’s inequality 227—228
Carleman’s theorem 224—225
Cartan’s lemma 174—175 194—195
Coefficients of Pade approximants, calculation of 77—79
Compact expression for Pade approximants 36
Continued fractions 42—64
Continued fractions, associated type 56
Continued fractions, convergence theorems 47—55
Continued fractions, corresponding type 56
Continued fractions, equivalence transformations 44—46
Continued fractions, equivalent type 57
Continued fractions, Euler-type 57
Continued fractions, Euler-type, even part of 45
Continued fractions, Gauss’s continued fraction 62—64
Continued fractions, general corresponding type 61
Continued fractions, Jacobi-type 56
Continued fractions, odd part of 45
Continued fractions, Pade approximants, relation to 57—58
Continued fractions, recursion formulas, fundamental 42—44
Continued fractions, Stieltjes-type 56
Continued fractions, Taylor series, relation to 55—57
Convergence in Hausdorff measure 193—205
Convergence in Hausdorff measure, convergence theorems 197—203
Convergence in Hausdorff measure, error formula 195—196
Convergence in Hausdorff measure, examples of 204—205
Convergence in the mean on Riemann sphere 203
Convergence of general sequences 166—185
Convergence of general sequences, approximant pole locations 175—180
Convergence of horizontal sequences (see Convergence of vertical sequences Duality
Convergence of vertical sequences 133 165
Convergence of vertical sequences, functions with only polar singularities 134—143
Convergence of vertical sequences, functions with polar singularities and “smooth” nonpolar singularity 143 147
Convergence of vertical sequences, functions with several “smooth” boundary circle singularities 147—149
Convergence of vertical sequences, general entire functions 155
Convergence of vertical sequences, N-point Pade approximant, extension to the 160—165
Convergence of vertical sequences, nonvertical sequences, extension to some 154—155
Convergence of vertical sequences, “smooth” entire functions 149—154
Convergence theory 119—205
Convergence uniqueness theorems 170
Convergent 43
Critical phenomena 10 12 274—279
Critical phenomena, bounds on thermodynamic limit 279
Critical phenomena, errors in, structure of 277—279
Critical phenomena, magnetic susceptibility 10 12
DeMontessus de Ballore’s theorem 134
Determinantal solutions for Pade approximants 8—9
Discovery of Pade approximants 7
Disk problem 183
Distribution of poles and zeros 186—192
Divergence series (see Gauss’s hypergeometric function Stieltjes series
Duality theorem 112—113
Duality theorem, matrix Pade approximants 271
Duality theorem, multivariate approximants 293
electrical circuits 288—291
Epsilon algorithm 75
Error formula for Pade approximants 195—196
Error function 73
Euler’s divergent series 76 212 216—217
Existence theorem 24—25
Exponential function, Pade approximants to 11
Exponential integral 73
Gammel-Baker approximants (see Generalized Pade approximants)
Gammel’s example 204—205
Gauss’s hypergeometric function 62—73
Gauss’s hypergeometric function, Bessel functions as confluence of 70—71
Gauss’s hypergeometric function, confluent form of 68—70
Gauss’s hypergeometric function, continued fraction for ratio of 62—64
Gauss’s hypergeometric function, divergent series 71—73
Gauss’s hypergeometric function, special cases of 64—68
Generalized Pade approximants 263—266
Geometric-mean-arithmetic-mean inequality 227—228
Hamburger problem, convergence 23
Hamburger problem, inclusion regions 246—248
Hamburger problem, scattering physics and 281—284
Hausdorff measure (see Convergence in Hausdorff measure)
Hermite polynomials (see Orthogonal polynomials)
Hermite’s formula 160
identities 26—41
Identities, cross ratio 28—30
Identities, expressed with Pade coefficients 34—36
Identities, five-term 33—34
Identities, three-term 30—33
Identities, triangle 31
Identities, two-term 26—28
Inequalities, fundamental 52
Infinite coefficients, series with, approximation of 267—269
Invariance properties 5 110—117
Invariance properties, argument transformations 110—111
Invariance properties, value transformations 112—113
Invariance Theorem 113
Invariance theorem, approximants, for 271—272
Invariance theorem, matrix Pad 6
Jost function 284
Kirchhoffs rules 289
Lagrange interpolation formula generalized 101
Lagrange — Beltrami decomposition 91
Laguerre polynomials (see Orthogonal polynomials)
Laplace transforms, inversion of 292
Legendre polynomial expansions, approximants for 291
Legendre polynomials (see Orthogonal polynomials)
LeRoy functions 266
| Linear fractional group 113—117
Linear fractional group, rotations of Riemann sphere equivalent to 115—117
Location of cuts 189—192
Location of cuts, numerical examples 128—131
Mandelstam representation 285—286
Matrix Pade approximants 270—273
Measure, convergence in (see Convergence in Hausdorff measure)
Moment problem 85
Moment problem, trigonometric 93
Montessus’s theorem 134—143
Multiple angle formulas (see Orthogonal polynomials)
Multivariate approximants 292—293
N-point Pade approximant 100—109
N-point Pade approximant, th roots of unity, fit on 107—108
N-point Pade approximant, Cauchy — Jacobi problem 101 105—106
N-point Pade approximant, convergence of vertical sequences 160—165
N-point Pade approximant, determinantal solution 103
N-point Pade approximant, inclusion regions 244—246
N-point Pade approximant, orthogonality property of denominators 106
N-point Pade approximant, Pade problem as a special case 100—101
Noncommunative algebra, Pade approximants over (see Matrix Pade approximants)
Normal, definition of 24
Notation for Pade approximants 7
Numerical examples 121—132
Numerical examples, asymptotic series, behavior for 127—128
Numerical examples, convergence at regular points 121—123
Numerical examples, convergence at singular points 123—126
Numerical examples, location of cuts 128—131
Orthogonal polynomials 85—89
Orthogonal polynomials, extremal properties 89
Orthogonal polynomials, Hermite polynomials 88
Orthogonal polynomials, Laguerre polynomials 87
Orthogonal polynomials, Legendre polynomials 87
Orthogonal polynomials, multiple angle formulas 88
Pade denominators, orthogonality properties of 85—86
Pade table 7 9—10 13—25
Pade table, block structure 19—24
Pade table, C table 13—19
Pade table, computation of 75—76
Pade table, connection between Pade tables of and 38—41
Pade table, Gragg’s example 23
Pade table, Sylvester’s determinant identity 14—16
Pade table, Taylor series 9
Pade — Borel summation procedure 287
Pade’s block theorem 20—22
Pade’s block theorem, illustration of 22
Parabola theorem 51—54
Polya freqeuency series 252—260
Polya freqeuency series, characterization of 253—255
Polya freqeuency series, convergence properties 255—260
Quadratic form, decomposition of into a sum of squares 90
Quadratic form, eigenvalue distribution for 93—99
Quadratic form, Toeplitz 93
Quantum field theory 286—287
Quotient difference algorithm 80—84
Quotient difference algorithm, rhombus rules 81
Recursion relations 74—84
Recursion relations, Baker’s algorithm 77—78
Recursion relations, coefficient problem 77—79
Recursion relations, root problem 80—84
Recursion relations, value problem 75—76
Recursion relations, Watson’s algorithm 79
Riemann sphere 113—117
Riemann sphere, chord length 117
Riemann sphere, complex plane, spherical representation of 114—115
Riemann sphere, continuity on 166
Riemann sphere, convergence in the mean on 203
Riemann sphere, convergence on 133—134
Riemann sphere, equicontinuity on 167
Riemann sphere, rotation as linear fractional transformation 115—117
Root solving, acceleration procedure for 292
Saffs theorem 163—165
Scattering physics 280—287
Scattering physics, forward scattering amplitude 281—282
Scattering physics, partial waves 282—284
Scattering physics, potential scattering 280—285
Schwarz’s lemma 173—174
Series with infinite coefficients, approximation of 267—269
Special functions, calculational procedures 292
Stieltjes expansion theorem 91
Stieltjes for N-point problem 244—246
Stieltjes integral representation 229—230
Stieltjes representation theorem 230
Stieltjes, convergence 218—233
Stieltjes, definition 209—213
Stieltjes, determinantal conditions 210—213
Stieltjes, diagonal sequences, limit of, existence 218—219
Stieltjes, dynamic dipole polarizability 291
Stieltjes, Hamburger problem 230—233 246—248
Stieltjes, inclusion region(s) for value of approximants 234—248
Stieltjes, inequalities 213—217
Stieltjes, interlacing properties 213—214
Stieltjes, Pade approximant coefficients to series coefficients relation 220
Stieltjes, scattering physics and 285
Stieltjes, series of 207—251
Stieltjes, uniqueness, conditions for 219—228
Taylor series 3—4
Taylor series, continued fractions and 55—57
Taylor series, expansion, definition of Pade approximants from 4—8
Taylor series, Pade table 9
Taylor series, values of function and 3—4
Thiele’s reciprocal difference method 105 106
Three-body problem 286
Transfinite diameter 192
Tschebycheff’s inequalities 248—251
Two-variable approximants 292—293
Uniqueness theorem 8
Unitary, of matrix Pade approximant 273
Villani’s limit theorem 268
Wallin’s corollary 154—155
Wallin’s example 204—205
Walsh’s corollary 181
Wilson’s Theorem 143—147
|
|
|
Ðåêëàìà |
|
|
|