|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
David H., Nagaraja H. — Order Statistics (Wiley Series in Probability and Statistics) |
|
|
Ïðåäìåòíûé óêàçàòåëü |
256—258 365
, Polya frequency function of order 2 78
132—133 362
256—258 365
153 258 362
(totally positive of order 2) 25
/ 365
Adaptive estimators 216—218
Analysis of variance, by range methods 253—256 261 364—365
Applications general 1—3
Applications of extremes 284—285
Applications of range 239—240
Approximations for moments of Order statistics 70—74 83—86
Approximations to upper percentage points of statistics expressible as maxima 125—133
Asymptotic distribution for dependent variates 309—311
Asymptotic distribution for multivariate samples 313—315
Asymptotic distribution of concomitants of Order statistics 345—350
Asymptotic distribution of extremes 296—309
Asymptotic distribution of intermediate Order statistics 311—313
Asymptotic distribution of linear functions of Order statistics 331—335
Asymptotic distribution of midrange 326—327
Asymptotic distribution of quantiles 285—290
Asymptotic distribution of range 324—326
Asymptotic distribution of sample spacings 327—328
Asymptotic distribution of trimmed mean 329—331
Asymptotic estimation 335—341
Bahadur representation of sample quantile 285 288 311
Basu’s theorem 174 209
Bayesian methods 236
Bernoulli distribution 32 54—55 88
Best linear estimates see “Linear estimators”
Best linear unbiased (BLU) predictor 209—210
Beta distribution 6
Beta distribution bounds for 92
Binomial distribution, moments of Order statistics in 44 360
Binomial distribution, range in 261—262 356
Bioequivalence 255
Bivariate distributions, estimation in 250—253 279
Bivariate distributions, Order statistics in 13 25 278
Bivariate exponential 102 117 321
Bivariate extremal distributions 313—315 321
Bivariate normal distribution, circular 250—251
Bivariate normal distribution, linear function of Order statistics in 114
Bivariate normal distribution, moments of Order statistics in 54
Blom’s estimates 191
blue 185—189 see
BLUE, tables of coefficients of 363—364
Bonferroni inequalities 126 133 152
Boole formula 125
Bootstrap estimation 183—185 227—228
Bounds for linear functions of Order statistics and their expectations 106—112 118
Bounds for moments of Order statistics 60—74
Bounds for upper percentage points of statistics expressible as maxima 125—133
c-comparison; c-ordering; c-precedence 79—82
Cauchy distribution 357
Cauchy distribution, median in 54
Cauchy distribution, moments of Order statistics in 57 357
Cauchy distribution, trimmed mean in 237
Cauchy’s functional equation 142
Cauchy’s functional equation, integrated 142
Cauchy’s inequality 107 111
Censoring 191
Censoring, BLUE in presence of 363—364
Censoring, estimation in presence of 191—208 229—231 335—341
Censoring, in exponential distribution 204—208 232—235
Censoring, of multivariate normal 203
Censoring, progressive 200—201
Censoring, Type I 191—195
Censoring, Type II 191—208
Characterizations 142—144 156—158
Chi (1 DF) distribution 357
Chi (1 DF) distribution, estimation for 363
Chi (1 DF) distribution, moments of Order statistics in 357
Chi (1 DF) distribution, percentage points of Order statistics in 355
Chi-squared distribution see “Gamma distribution”
Circular normal distribution 250—251
Closest two out of three observations 237
Clusters 137
Combinatorial extreme-value distributions 129
Completeness 173—175
Computer simulation, Order statistics in 15 355
Computing distribution of functions of Order statistics 355
Computing distribution of Order statistics in inid case 105—106
Concave-convex functions 82
Concomitants of Order statistics 144—148 158 251—253
Concomitants of Order statistics in double sampling 267—268
Concomitants of Order statistics in ranked-set sampling 263—264
Concomitants of Order statistics, asymptotic theory of 345—350 353
Conditional distribution of Order statistics 17
Confidence intervals for in normal samples 257 365
Confidence intervals, distribution-free 159—164 169—170
Contamination see “Outliers”
control charts 274—276
Convex function 66 107
Correlation coefficient, quick estimate of 252
Covariances of Order statistics 34—35 50
Covariances of Order statistics, tables of 356—359
Covering circle 251
Data analysis 2 239
Data compression 3 290—296
Density-quantile function 84
Density-quantile function in asymptotic distribution of Order statistics 285—291 311—312 336—340
Dependent variates, asymptotic distribution of Order statistics 309—311
Dependent variates, bounds for expectations of L-statistics 106—112 118—119
Dependent variates, Order statistics in 99—102 114—117
Dependent variates, quantile-theory for 288
DFR, Decreasing failure rate 75 89
Differences of order statistics 13—14 26—29
Differences of order statistics in uniform distribution 14 133—137
Differences of order statistics, successive (spacings) 18 133—137 153—154 327—328
Dirichlet distribution 21 134
Discrete populations see also under specific distributions
Discrete populations, distribution of Order statistics 16 19—20 29 31
Discrete populations, distribution of range 30
Discrete populations, quick tests in 261—262
Dispersion, measures of 243—250 278—279
Dispersion, smaller in 77—78
Distribution of Order statistics 9—32 see
Distribution of Order statistics for dependent variates 99—102 114—117
Distribution of Order statistics for discrete parent 16 29
Distribution of Order statistics for independent non-iid variates 96—99
Distribution of Order statistics, unimodality of 23
Distribution-free bounds for moments of Order statistics and range 59—74 86—89
Distribution-free confidence intervals for quantiles 159—164 169—170
Distribution-free prediction intervals 167—169
Distribution-free tolerance intervals 164—167 169
Domain of attraction (for extreme) 296—300 303 305
Domain of attraction (for extreme) in tail index estimation 341—344
Domain of attraction (for extreme), convergence of moments 305
Domain of attraction (for extreme), discrete parent 304
Double exponential (Laplace) 358 364
Double sampling 267—268
Duality principle 46—47
EDA (exploratory data analysis) 239
Efficiency see relevant statistic
Elementary coverages 134 167
entropy 91
Equality of variances, tables for test of 362 365
Equality of variances, tests of 136 153 257—258
Equicorrelated normal variates 100—102 114—115
Equicorrelated normal variates, asymptotic distribution of maximum for 311
Equicorrelated normal variates, linear functions of 101 114—115
Equicorrelated normal variates, maximum in modulus of 360
Equicorrelated normal variates, maximum of 360
Equicorrelated normal variates, range of 101
Equicorrelated normal variates, studentized maximum of 361
Estimation by Order statistics 171—237
Estimation by Order statistics for censored data 191—208 230—234 363—364
Estimation by Order statistics for distributions with end-point(s) depending on unknown parameters 173—177 224—225
Estimation by Order statistics of extreme quantiles 342
| Estimation by Order statistics, simplified 189—190 200
Exchangeable variates 47 102—103
Expected values see “Moments of Order statistics”
Exponential distribution 17—18 22 26 52 142 157
Exponential distribution in life testing 204—208 232—234
Exponential distribution, asymptotic distribution of maximum in 22
Exponential distribution, bivariate (Marshall — Olkin) 102 117 207 321
Exponential distribution, characterization of 142—143 157—158
Exponential distribution, estimation of parameters of 204—208 232—235
Exponential distribution, L-statistics in 137—138
Exponential distribution, moments of Order statistics in 52
Exponential distribution, optimal spacing of Order statistics in 290—291 295
Exponential distribution, recurrence relation for 117
Exponential distribution, test of 273
Exponential distribution, tests in 205—206 232
Exponential distribution, truncated 57—58 359
Extremal 60
Extremal pdf 61—64
Extremal process 306
Extremal quotient 15 326
Extreme deviate 1 124—125
Extreme multivariate 131 362
Extreme studentized 149 324 361
Extreme, tables of cdf of 361
Extreme-value distribution(s) in asymptotic theory 283—285
Extreme-value distribution(s), bivariate 314—315 321
Extreme-value distribution(s), estimation of parameters of 204 297
Extreme-value distribution(s), generalized 297 357
Extreme-value distribution(s), moments of Order statistics in 357
Extreme-value distribution(s), multivariate 314—315
Extreme-value distribution(s), optimal spacing of Order statistics in 295
Extreme-value distribution(s), probability plotting for 271
Extreme-value distribution(s), three types of 296 303
Extreme-value theory 283—285 311 323
Extremes 1 see
Extremes, applications of 284—285
Extremes, asymptotic distribution of 296—309 317—321
Extremes, kth 306—307 319—320
Failure rate 75 204 see
Failure rate, increasing (IFR) 75 89—90
Finite population, Order statistics in 23 25 111 151 170 280
Fisher information (FI) 180—183 225—227
Folded normal distribution 363
Force of mortality 204 see
Fractional Order statistics 21 162
Gamma distribution 91
Gamma distribution, bounds for 92
Gamma distribution, L-statistics in 139
Gamma distribution, moments of Order statistics in 357
Gamma distribution, optimal spacing of Order statistics in 295
Gamma distribution, percentage points of Order statistics in 355
Gaps of order m 136—137
Gauss — Markov theorem 186
Generalized distance 96 292
Generalized Order statistics 21—22
Geometric distribution 22 32 235
Geometric range 326
Gini’s coefficient of concentration 140
Gini’s mean difference 249—250 253 269 273 279
Gini’s mean difference, asymptotic normality of 331 334
Goodness-of-fit tests, based on spacings 136—137 316—317
Goodness-of-fit tests, based on spacings and probability plotting 272—273 281—282
Goodness-of-fit tests, tables for 365
Graphical methods, half-normal plotting 273
Graphical methods, hazard plotting 274
Graphical methods, probability plotting 270—272
Greatest convex minorant 66
Greenwood statistic 136
Grouped data 201—202
Gupta’s simplified estimators 189—191
Half-normal distribution see “Chi (1 DF) distribution”
Half-normal plotting 273—274
Harmonic analysis 135 362
Hazard plotting 274
Hazard rate 75 204
Hazard rate, ordering 75 90
Historical references, L-statistics 331
Historical references, method of inclusion and exclusion 130
Historical references, outliers 107
Historical references, robustness 212
Hoelder’s inequality 109
Homogeneity of variances see “Equality of variances”
Hypothesis testing by Order statistics in exponential distribution 206
Hypothesis testing by Order statistics in normal distribution 257—261
Hypothesis testing by Order statistics in uniform distribution 177—179
IFR, Increasng failure rate 75 89—90
IFRA, Increasing failure rate average 76 89—90
Inclusion and exclusion, principle of 46 125—133
Independence results 18—19
Independence results for studentized statistics 123—124 148
Independence results, asymptotic 289—290 309 313 315
Inequalities for moments of Order statistics see “Bounds”
Inequalities for ordered sums 109—110
Inequality, Bonferroni 126
Inequality, Cauchy 107 111
Inequality, Hoelder 109
Inequality, Jensen 79
Inequality, Schwarz 61 85
Information in Order statistics 180—183
Inid (independent nonidentrically distributed) Order statistics in inid case 26 96—99 112—114
Intensity function 204 see
Intermediate Order statistics 311—313
Interquartile distance 163
Interval analysis 205
Interval hypothesis 255—256 364—365
Inverse cdf, approximations to moments of Order statistics by 80 see
Inverse Gaussian 358 363
Jensen’s Inequality 79
k-out-of-n systems 2 97
kth extreme 306—307 319—320
Kurtosis, coefficient of 217 247
L-estimators see “Linear estimators”
L-moments 269 281
L-statistics see “Linear functions of Order statistics”
Laplace distribution 358 364
Least-squares (LS) estimation of location and scale parameters 185—191
Legendre polynomials 51 71—73
Life testing 204—208
Likelihood ratio order 76 90
Linear estimators 171—172 see
Linear estimators by Gauss — Markov theorem 185—191 228—230
Linear estimators for censored data 191—204 230—231 363—364
Linear estimators for grouped data 201—202
Linear estimators for symmetric parent 188—189
Linear estimators in presence of outliers 218—223
Linear estimators, asymptotic theory of 331
Linear estimators, Blom’s 191
Linear estimators, miscellaneous 191
Linear estimators, robust 211—223 235—237
Linear estimators, simplified (Gupta) 189—190 200
Linear functions of Order statistics 33 see
Linear functions of Order statistics as estimators of scale and location parameters 185—208 228—234
Linear functions of Order statistics for equicorrelated normal variates 100—102 114—115
Linear functions of Order statistics in bivariate normal 114 140
Linear functions of Order statistics, asymptotic distribution of 331—335
Linear functions of Order statistics, bounds for 106—109 117—118
Linear functions of Order statistics, distribution of 137—140
Linear functions of Order statistics, optimal asymptotic estimation by 335
Linear functions of Order statistics, studentized 148—150
Linear programming 128
Lipschitz condition 333
Lloyd’s method of estimation by Order statistics 185—189 228—230
Location and scale parameters see also “Linear estimators”
Location and scale parameters for censored data 191—208 363—364
Location and scale parameters in uniform distribution 173—177 224
Location and scale parameters, estimation of 185—208
Location and scale parameters, quick measures of 241—243
Location and scale parameters, robust estimation of 211—223 235—237
Log-gamma distribution 364
Log-logistic distribution 364
|
|
|
Ðåêëàìà |
|
|
|