|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
David H., Nagaraja H. — Order Statistics (Wiley Series in Probability and Statistics) |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Logistic distribution 358
Logistic distribution, BLUE in 364
Logistic distribution, estimation of parameters in 364
Logistic distribution, generalized 52
Logistic distribution, moments of Order statistics in 358
Logistic distribution, optimal spacing of Order statistics in 295
Logistic distribution, percentage points of Order statistics in 355
Lognormal distribution, estimation of parameters in 364
Lognormal distribution, moments of Order statistics in 358
Lognormal distribution, percentage points of Order statistics in 355
Lorenz curve 90—91
m-dependent processes 288 309—310
Majorization 103—104
Markov chain, order statistics as a 17—20 154 174
Markov chain, record values as a 31—32
Maxima, ratio of 178
Maxima, statistics expressible as 125—133 149—152
Maximum likelihood (ML) methods, for censoring and truncation 193—202
Maximum, , , in multinomial 151
Maximum, , , of exchangeable variates 102—103
Maximum, , , , asymptotic distribution of 22 296
Maximum, , , , bounds for moments of 60—63 119
Maximum, , , , distribution of 26
Mean deviation, in normal samples 250
Mean deviation, robustness of 212
Median 2
Median absolute deviation (MAD) 223
Median Filter 141
Median for Cauchy distribution 54
Median in life testing 191
Median in normal samples 241—242 277
Median of pairwise means 215
Median, asymptotic properties 285 288
Median, confidence intervals for 159—162 362
Median, distribution of (n even) 28
Median, efficiency of 93 241—242
Median, moving 140
Median, multivariate 164 169
Median, percentage points for various populations 356
Median, population 5 45
Median, sample 2 23 241—243
Midmean 217 235—237
Midrange (=midpoint) 15
Midrange in uniform distribution 175 320
Midrange, asymptotic distribution of 326—327
Midrange, distribution of 26—27
Midrange, properties of 242
Minimum , , application of 284
Minimum , , asymptotic distributions of 303
Mode, estimation of 290
Moments of Order statistics 33—44 49—55
Moments of Order statistics, approximations for 70—74 83—86
Moments of Order statistics, bootstrap estimation of 183—5 227—228
Moments of Order statistics, bounds for 60—74
Moments of Order statistics, discrete case 42—44
Moments of Order statistics, existence of 34 54
Moments of Order statistics, normal case 40—42 53
Moments of Order statistics, recurrence relations between 44—49 55—58
Moments of Order statistics, relations between 38—39 49—52
Moments of Order statistics, tables of 356—360
Monte Carlo methods in robustness studies 217 223
Monte Carlo methods, Order statistics in 15 31
Moving order statistics 140—141
Multinomial distribution, maximum variate in 151
Multinomial distribution, moments of extremes 360
Multinomial distribution, range in 261—262
Multiple comparisons 3
Multiple comparisons based on range 253—256
Multiple decision procedures 3
Multivariate asymptotic distribution of Order statistics 313—315
Multivariate data, ordering of 13
Multivariate extreme deviate 131
Multivariate inequalities 133
Multivariate medians 164 169
Multivariate normal distribution see also “Equicorrelated normal variates”
Multivariate normal distribution, censoring of 203
Multivariate normal distribution, Order statistics in 13 100—102
Multivariate tolerance regions 166
NBU, New better than used 76 90
NBUE: NBU in expectation 91
Negative binomial distribution 360
Nonparametric inference 159—170
Normal distribution see also “Bivariate normal distribution”; “Multivariate normal distribution”
Normal distribution, asymptotic distribution of maximum in 302
Normal distribution, asymptotic estimation in 339—340
Normal distribution, bounds and approximations for 80—86
Normal distribution, cdf of extremes in 355
Normal distribution, cdf of range in 356
Normal distribution, coefficients of BLUE in 363
Normal distribution, contaminated 360
Normal distribution, independence of mean and range 18—19
Normal distribution, linear estimators of and for 189—190
Normal distribution, moments of Order statistics 40—42 356
Normal distribution, optimal spacing of Order statistics in 294—295 317
Normal distribution, percentage points of Order statistics in 355
Normal distribution, probability plotting for 270—271
Normal distribution, quick estimators of and for 241—250
Normal distribution, robust estimation of and for 211—216
Normal distribution, tests of 272—273 365
Notation 4—7
Optimal asymptotic estimation by Order statistics 335
Optimal choice (spacing) of Order statistics in large samples 290—296
Optimal choice (spacing) of Order statistics in large samples, tables for normal parent 366
Optimal choice (spacing) of Order statistics in large samples, tests under 296
Order statistics see “Distribution of Order statistics” and under specific statistics and specific distributions
Order statistics, fractional 21 162
Order statistics, generalized 21—22
Orthonormal system 70
Outliers 3
Outliers, robust estimation in presence of 218—223 236—237
Outliers, tables of tests for 360—362
P-P plot 272
Pareto distribution 52
Pareto distribution, k-variate 117
Pareto distribution, moments of Order statistics in 52 360
Pareto distribution, optimal spacing of Order statistics in 295
Partial sums of concomitants 348 353
Peak to median ratio 27
Peakedness 77
Percentage points see under specific statistics and specific distributions
Permanent (of a matrix) 98 113
Poisson distribution, range in 261—262
Pooled rms estimator of 121
Power-function distribution 52
Power-function distribution, characterization 157
Power-function distribution, optimal spacing of Order statistics in 295
Prediction, distribution-free intervals 167—169
Prediction, parametric intervals 208—211
Prediction, point predictors 209—211
Princeton study 217—218
Probability plotting 270—273 284
Q-Q plotting 270
Quality control 274—277
Quantile, density function 84
Quantile, differences 163—164
Quantile, function 5
Quantile, population 5
Quantile, sample 5
Quantiles, asymptotic (joint) distribution of 285—290 316 347
Quantiles, bootstrap estimation of 183—185 227—228
Quantiles, bounds for in terms of 80—83
Quantiles, distribution-free confidence intervals for 159—164 169—170
Quasi-midrange 242
Quasi-range 15
Quasi-range in estimation of 248 364—365
Quasi-range in normal samples 248—249 326 351 364
Quasi-range, moments of 356
Quasi-range, tables of cdf 356
Quenouille’s method see “Jackknife”
Quick statistics 239—282 see
| Random division of an interval 133—137 153—155
Random division of an interval, distribution of longest interval 135 154—155 362
RANGE 1
Range for discrete parent 30 261—262
Range in quality control 274—276
Range in short-cut methods 239—240 243—247 257—262 356
Range in uniform distribution 175
Range ratios, 136 258 362
Range ratios, 365
Range ratios, in normal distribution 257 365
Range ratios, in uniform distribution 27 363
Range to spot gross errors 247—248
Range, applications of 239—240
Range, approximations to 244—246
Range, asymptotic distribution of 324—326
Range, bivariate (extreme spread) 251
Range, bounds for moments of 64—65
Range, distribution of 13—14 26—27
Range, effect of nonnormality on 245 247
Range, efficiency of 240 243 277
Range, mean 244
Range, moments of 37 54 356—357
Range, moving 140—141 276
Range, noncentral 280
Range, power function of range tests 254—256 279—280
Range, recurrence relations for expected 56—57
Range, studentized see “Studentized range”
Range, tables relating to 356
Range, variance of 54
Range, “thickened” 248—249 259
Rank-order statistics 3
Ranked-set sampling 262—267 280—281
Rate of convergence of 302—303
Rate of convergence of L-statistics 334—335
Ratio of Order statistics 28
Rayleigh distribution 204 359 364
Rayleigh distribution, optimal spacing of Order statistics in 295
Record values 20—21 32 87 307 328
Rectangular distribution see “Uniform distribution”
Recurrence relations between moments and cdf’s of Order statistics 23 44—49
Recurrence relations for Order statistics in non-iid variates 104—106
Regression coefficient, quick estimate of 251—252
Regression model, estimation of parameters in 202—203
Reliability 207—208
Robust estimation 211—223
Robust estimation in contaminated normal distribution 360
Robust estimation in presence of outliers 211 218—223
Robust estimation of mean of symmetric distributions 212—216
Robustness, lack of exponential in life testing 204
Robustness, lack of tests for homogeneity of variances 258
s-comparison 80 82—83
SCALE see also “Location and scale parameters”
Scale, estimation in presence of outliers 222—223
Schwarz’s inequality 61 86
Scores 33
Selection differential 41—42 53 65 102 351—353
Selection differential, induced 144 348 353
Selection procedures 102 144
Sensitivity curve 218
Sequential, confidence intervals 164
Sequential, tests based on range 258 260
Serial correlation 136
Series system 90
Short-cut procedures 239—282
Short-cut procedures by optimal spacing of Order statistics 290
Short-cut procedures for discrete variates 281—282
Short-cut procedures for estimating dispersion 243—248
Short-cut procedures for estimating location 241—243
Short-cut procedures for tests in normal samples 257—261 365
Short-cut procedures in bivariate samples 250—253
Short-cut procedures, tables for 365
Signal processing 141
Simulation, Order statistics in 15 355
Sorting (ordering) 31 355
Spacings (differences between successive Order statistics) 64 134—136 138 153—154 187—188 273
Spacings from exponential distribution 18 113 142
Spacings of order m 136—137 290 341—342
Spacings, asymptotic distributions 154 308 319—320 327—328
Stable distributions 295
Star-shaped 76
Stein's test, range version of 260
Stochastic orderings 74—80
Stratified samples 164
Structural inference 192
Student's distribution, moments of Order statistics in 359
Studentization 121—124
Studentization, external 121
Studentization, internal 121
Studentized range 1 121—124
Studentized range in analysis of variance 253—256
Studentized range in multiple comparisons 253—256
Studentized range, bounds for internally 247—248
Studentized range, noncentral 256 280
Studentized range, tables 360—362
Sufficient statistics, Order statistics as 172
Superadditive 76—77
Symmetric distributions 22 36 50
Symmetric distributions, bounds for moments of Order statistics in 62—64
Symmetric distributions, estimation of location and scale parameters in 179—180
Symmetric distributions, robust estimation of mean of 211—218
Symmetric distributions, tests for 274
Symmetric power distribution 215
Systematic statistics = function of the order statistics 15
Tables 4 355—366
Time series 135 140—141
Tolerance (= breakdown point) 215—216
Tolerance intervals for normal distributions using range 276—277 366
Tolerance intervals in exponential distribution 234
Tolerance intervals, distribution-free 164—167 169 363
Total time on test, statistic 91 209 234—235
Total time on test, transform 91
Trimmed mean 51 213
Trimmed mean as robust estimator 213—216
Trimmed mean in Cauchy distribution 237
Trimmed mean in normal distribution 242
Trimmed mean, asymptotic distribution of 329—331 335
Truncated distributions, moments of Order statistics in 359
Truncated normal distribution, estimation for 193—194
Truncation, estimation of parameters in case of 191—194
Truncation, versus censoring 191—192
Tukey’s -distributions 63—64
Tukey’s -distributions in robustness studies 214 247
UMP tests based on Order statistics 178—179
UMVU estimators, Order statistics as 174—175
Unbiased nearly best linear estimator 191
Uniform distribution 14—15
Uniform distribution, censoring in 230 233
Uniform distribution, differences of Order statistics in 14
Uniform distribution, estimation of parameters of 173—177 224
Uniform distribution, hypothesis testing in 177—179 363
Uniform distribution, L-statistics in 139
Uniform distribution, midpoint in 26—27
Uniform distribution, moments of Order statistics in 35—36 356
Uniform distribution, percentage points of Order statistics in 355
Uniform distribution, random division of interval 133—135
Uniform distribution, range in 356 363
Uniform distribution, range ratio in 27 178 363
Unimodal distribution of Order statistics 23
Upper percentage points, of statistics expressible as maxima 125—127 361—362 see
Vandermonde’s theorem 129
Variance, analysis of see “Analysis of variance”
Variances of Order statistics 34—35 see
Weibull distribution 364
Weibull distribution in asymptotic theory 284
Weibull distribution, estimation for 364
Weibull distribution, moments of Order statistics in 359
Weibull distribution, optimal spacing of Order statistics in 295
Weibull distribution, percentage points of Order statistics in 355
Whitworth 136
Wilcoxon’s test, relation to robust estimation 215
|
|
|
Ðåêëàìà |
|
|
|