Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Anderson P.W. — Basic notions of condensed matter physics | |
Sornette D. — Critical phenomena in natural sciences | |
Guillemin V., Pollack A. — Differential topology | 33 |
Agarwal R.P. — Difference Equations and Inequalities. Theory, Methods and Applications. | 254 |
Ñåðãèåíêî À.Á. — Öèôðîâàÿ îáðàáîòêà ñèãíàëîâ | 374 |
Apostol T.M. — Calculus (vol 1) | 145 (Exercise 5) |
Hunter J.K., Nachtergaele B. — Applied Analysis | 62, 380 |
Rudin W. — Principles of Mathematical Analysis | 117 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 1862, 1864 |
Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 170, 197 |
Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 76, 99, 803 |
Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 125, 186, 216 |
Fisher Y. — Fractal Image Compression. Theory and Application | 7, 34, 35, 36—38, 50, 52, 59, 92, 96, 98, 123, 215, 217, 225, 228, 232, 263, 294, 297, 306, 307 (see also “Attractor”) |
Girard J.-Y., Taylor P., Lafont Y. — Proofs and Types | 72, 95 |
Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 12, 379—380, 386—387, 414 |
Bulirsch R., Stoer J. — Introduction to numerical analysis | 264 |
Olver P.J. — Equivalence, Invariants and Symmetry | 38, 40, 90, 91 |
Hoffman J.D. — Numerical Methods for Engineers and Scientists | 141 |
Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach | 88 |
Miranker W.L. — Numerical Methods for Stiff Equations and Singular Perturbation Problems | 168 |
Korsch H.J., Jodl H.-J. — Chaos: A Program Collection for the PC | 47, 210, 302 |
Kodaira K. — Complex manifolds and deformation of complex structures | 44 |
Molchanov I.I. — Limit theorems for unions of random closed sets | 29 |
Hille E. — Ordinary Differential Equations in the complex domain | 9 |
Bochner S., Martin W.T. — Several Complex Variables | 50 |
Rudin W. — Real and Complex Analysis | 220, 285, 308 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 1862, 1864 |
Graves L.M. — Theory of Functions of Real Variables | 146, 149 |
Buss S.R. — 3-D computer graphics. A mathematical introduction with openGL | 25, 285 |
Webster R. — Convexity | 356, 366 |
Lefschetz S. — Algebraic topology | 318, 324 |
Ghosh S.K. — Visibility Algorithms in the Plane | 245 |
Benson D. — Mathematics and music | 292 |
Kundu P.K., Cohen I.R. — Fluid mechanics | 486 |
van der Geer G. — Hilbert modular surfaces | 14 |
Ahlfors L.V. — Complex analysis | 86 |
Barnsley M. — Fractals Everywhere | 74, 76, 78, 80, 82, 103, 111, 112, 131, 153, 220, 272, 275, 284, 291, 357 |
Herrmann H.J. (ed.), Roux S. (ed.) — Statistical models for the fracture of disordered media | 180 |
Parisi G. — Statistical field theory | 142, 162, 216 |
Fletcher R. — Practical methods of optimization. Volume 1: unconstrained optimization | 101 |
Chorin A., Marsden J. — A Mathematical Introduction to Fluid Mechanics | 97 |
Brin M., Stuck G. — Introdution to dynamical system | 2 |
Artin M. — Algebra | 162 |
Polya G., Latta G. — Complex Variables | 126 |
Hahn L.Sh. — Complex Numbers and Geometry ( Spectrum Series) | 143, 160 |
Huang K. — Statistical Mechanics | 445, 449 |
Liddle A., Lyth D.H. — Cosmological Inflation and Large-Scale Structure | 174 |
Stauffer D., Aharony A. — Introduction To Percolation Theory | 76 |
Cherry W., Ye Z. — Nevanlinna's Theory of Value Distribution: The Second Main Theorem and Its Error Terms | 146 |
Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 20 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 29, 224 |
Lorentzen L., Waadeland — Continued fractions and applications | 101 |
Hand L.N., Finch J.D. — Analytical Mechanics | 481—482 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 77, 98 |
Mahmoud H.M. — Evolution of random search trees | 85 |
Gupta M.M., Jin L., Homma N. — Static and dynamic neural networks | 473 |
Gonzalez-Miranda J.M. — Synchronization and Control of Chaos: An Introduction for Scientists and Engineers | 18, 112, 114 |
Lawvere F.W., Rosebrugh R. — Sets for Mathematics | 131, 224 |
Marchisotto E.A., Smith J.T. — Legacy of Mario Pieri in Geometry and Arithmetic | 52, 175—176, 270 |
Grillet P.A. — Abstract Algebra | 60 |
Merris R. — Combinatorics | 141 |
Liao X., Wang L., Yu P. — Stability of Dynamical Systems, Vol. 5 | 593, 605, 609, 640, 646—652, 654—657 |
Lynch S. — Dynamical Systems with Applications Using Mathematica® | 34, 266 |
Machel A.N., Wang K. — Qualitative Theory of Dynamical Systems: The Role of Stability Preserving Mappings | 47, 64 |
Reich S., Shoikhet D. — Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces | 107 |
Winter M. — Goguen Categories: A Categorical Approach to L-Fuzzy Relations | 23 |
Velleman D.J. — How to Prove It: A Structured Approach | 255 |
Hall G.R., Lee — Continuous dynamical systems | 7 |
Hatcher A. — Algebraic Topology | 31, 73, 114, 179, 229, 493 |
Kohonen T. — Self-organizing maps | 95, 128 |
Enderton H.B. — Elements of set theory | 54, 218 |
Zung N.T. — Poisson Structures and their Normal Forms | 205 |
Gabbay D.M. (Ed), Woods J. (Ed) — Logic and the Modalities in the Twentieth Century, Vol. 7 | 66, 70, 73 |
Searcid M. — Metric Spaces | 180 |
Gohberg I., Goldberg S. — Basic Operator Theory | 255 |
Block L.S., Coppel W.A. — Dynamics in One Dimension | 5 |
Hrbacek K., Jech T. — Introduction to Set Theory | 69 |
Pierce B.C. — Basic category theory for computer scientists | 41, 63 |
Goldblatt R. — Topoi | 123 |
Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry | 318 |
Hahn L.- Sh., Epstein B. — Classical Complex Analysis | 90, 103, 183 |
Fradkin E. — Field theories of condensed matter systems | 125 |
Dugunji J. — Topology | 305 |
Andreescu T., Feng Z. — Path to Combinatorics for Undergraduates: Counting Strategies | 128 |
Smith P. — Explaining chaos | 95, 100 |
Pugh C.C. — Real Mathematical Analysis | 43, 228, 334 |
Kemeny T., Snell J.L., Thompson G. — Introduction to finite mathematics | 205 |
Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 13 |
Morris S.A. — Topology without tears | 87, 120 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 42 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 23 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 23 |
Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | 270 |
Devaney R.L. — An introduction to chaotic dynamical systems | 18 |
Finch S.R. — Mathematical constants | 304 |
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 201 |
Mumford D., Wright D., Series C. — Indra's Pearls: The Vision of Felix Klein | 51, 78 |
Hein J.L. — Discrete Mathematics | 78 |
Shiffer M.M., Bowden L. — Role of Mathematics in Science | 53—55, 125,126 |
Holden A.V. — Chaos | 59 |
Smith S.W. — Digital Signal Processing | 68—70, 514, 544 |
Imry Y. — Introduction to Mesoscopic Physics | 30, 138 |
Carleson L., Gamelin T.W. — Complex dynamics | 27 |
Yeomans J.M. — Statistical Mechanics of Phase Transitions | 108 |
Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 245, 251, 262, 267—269, 671, 548, 573, 634, 669 |
Dudgeon D.E., Mersereau R.M. — Multidimensional Digital Signal Processing | 350 |
White D.J. — Markov Decision Processes | 41 |
Kadanoff L.P. — Statistical physics | 52, 257 |
Toda M., Kubo R., Saito N. — Statistical Physics I: Equilibrium Statistical Mechanics, Vol. 1 | 174, 220 |
Rall D. — Computational Solution to Nonlinear Operator Equations | 58 |
Antman S.S. — Nonlinear Problems of Elasticity | 675 |
West Th. (Ed) — Continuum Theory and Dynamical Systems, Vol. 149 | 211 |
Makarov B.M. — Selected Problems in Real Analysis | 125 |
Steenrod N.E. — First Concepts of Topology | 60 |
Kaczor W.J., Nowak M.T. — Problems in Mathematical Analysis ll: Continuity and Differentiation, Vol. 2 | 15 |
Stauffer D., Aharony A. — Introduction to percolation theory | 76 |
Lipschutz S.Ph.D. — Schaum's outline of theory and problems of finite mathematics | 234 |
Burn R.P. — Numbers and Functions: Steps to Analysis | 7.20, 9.18 |
Hale J.K., Kocak H. — Dynamics and Bifurcations | 72, 444 |
Mahmoud H.M. — Sorting: a distribution theory | 159 |
Ionin Y.J., Shrikhande M.S. — Combinatorics of Symmetric Designs | 39 |
Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 240, 268 |
Smullyan R.M. — Godel's incompleteness theorems | 102 |
Rudin W. — Real and complex analysis | 151, 229, 247, 293, 297, 314, 318 |
Kress R., Gehring F.W. — Numerical Analysis | 43 |
Lawvere F.W., Schanuel S.H. — Conceptual Mathematics: A First Introduction to Categories | 117, 137 |
Kuczma M., Choczewski B., Ger R. — Iterative Functional Equations | 3, 15 |
Buchholz W. — Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies | 20 |
Maimistov A.I., Basharov A.M. — Nonlinear optical waves | 565 |
Muta T. — Foundations of Quantum Chromodynamics | 204 |
Duffie D. — Security Markets. Stochastic Models | 48, 191 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 36, 58 |
Greenberg M.D. — Advanced engineering mathematics | 33 |
Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 145; (Exercise 5) |
Gerstner W., Kistler W.M. — Spiking Neuron Models | 83 |
Kumar P.R., Varaiya P. — Stochastic Systems: Estimation, Identification, and Adaptive Control | 146 |
van Baal P. (ed.) — Confinement, duality, and non-perturbative aspects of QCD | 187, 198, 235, 274, 353, 473 |
Sheil-Small T. — Complex polynomials | 48 |
Holden A.V. — Chaos | 59 |
Preston C. — Iterates of Maps on an Interval | 21 |
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 140 |
Hilborn R.C. — Chaos and nonlinear dynamics | 20—22, 32, 164 |
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 119 |
Tourlakis G.J. — Lectures in Logic and Set Theory: Mathematical Logic | 203,310 |
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 31, 77, 181 |
Chabert J.-L., Weeks C., Barbin E. — A History of Algorithms: From the Pebble to the Microchip | 188, 200, 221 |
Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 66 |
Bellman R. — Introduction to the mathematical theory of control processes (Volume II: Nonlinear Processes) | 79 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 139 |
Hein J.L. — Discrete Structures, Logic, and Computability | 76 |
Beckenbach E.F. (editor), Polya G., Lehmer D.H. and others — Applied combinatorial mathematics | 417, 424 |
Aoki K. — Nonlinear dynamics and chaos in semiconductors | 3, 185 |
Landau L.D., Lifschitz E.M. — Fluid Mechanics. Vol. 6 | 118 |
Ascher U.M., Russell R.D., Mattheij R.M. — Numerical Solution of Boundary Value Problems for Ordinary Differential Equations | 49 |
Stone M. — The physics of quantum fields | 209 |
Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 7 |
Hu S.-T. — Elements of real analysis | 144, 190 |
Munkres J. — Topology | 158, 182 |
Berinde V. — Iterative Approximation of Fixed Points | 3, 63, 69, 70, 73, 78, 82, 91, 94, 97, 100, 102, 104, 107, 114, 117, 121, 125, 128, 129, 142—146, 161, 163, 166, 169, 201, 203, 204, 210, 212 |
Bak J., Newman D.J. — Complex Analysis | 173 |
Granas A., Dugundji J. — Fixed Point Theory | for family |
Kenzel W., Reents G., Clajus M. — Physics by Computer | 82, 87 |
O'Donnell C.J. — Incidence Algebras | 202 |
Fenn R. — Geometry | 202 |
Barwise J. (ed.) — Handbook of Mathematical Logic | 683, 684 |
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 13, 113, 122, 196, 200, 333 |
Hazewinkel M. — Handbook of Algebra (part 2) | 26 |
Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 81 |
Bóna M. — A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory | 110, 122 |
Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 576 |
Kleinert H., Schulte-Frohlinde — Critical Properties of (Phi)P4-Theories | 164, 166 |
Shirer H.N. — Nonlinear Hydrodynamic Modeling: A Mathematical Introduction | 49, 50, 79, 85, 413—421, 425, 428, 464 |
Jaeger F.M. — Lectures on the principle of symmetry and its applications in all natural sciences | 14, 17, 111 |
Bayfield J.E. — Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics | 35, 72 — 74 |
Schulman L.S. — Techniques and applications of path integration | 291, 298, 299, 302 |
Olver P.J., Shakiban C. — Applied linear. algebra | 392, 511, 528, 540 |
Hein J.L. — Theory of Computation: An Introduction | 37 |
Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | 172, 180—181 |
Kreyszig E. — Advanced engineering mathematics | 736, 781, 787 |
Steeb W.- H. — Problems and Solutions in Introductory and Advanced Matrix Calculus | 87, 196 |
Smullyan R.M., Fitting M. — Set theory and the continuum problem | 36 |
Simmons G.F. — Introduction to topology and modern analysis | 338 |
Kreher D.L., Stinson D.R. — Combinatorial Algorithms: Generation, Enumeration and Search | 195 |
Bhaya A., Kaszkurewicz E. — Control Perspectives on Numerical Algorithms and Matrix Problems | 15 |
Binmore K. — Fun and Games: A Text on Game Theory | 321, 401 |
Mackey M.C. — Time's arrow: the origins of thermodynamic behavior | 23 |
Aschbacher M. — Finite Group Theory | 14 |
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators | 307—309 |
Afraimovich V.S., Hsu S.-B. — Lectures on Chaotic Dynamical Systems | 4, 11 |
Wimp J. — Computation with recurrence relations | 211, 218 |
Anderson G.A., Granas A. — Fixed Point Theory | 1 |
Kigami J. — Analysis on Fractals | 9, 14, 70 |
Quarteroni A., Saleri F. — Scientific Computing with MATLAB | 47 |
Pathria P.K. — Statistical Mechanics | 406, 427—428, 432—433, 435, 450 |
Haller G. — Chaos Near Resonance | 1 |
Hubbard J.R. — Theory and Problems of Programming with C++ | 70 |
Katznelson I., KatznelsonY.R. — A (Terse) Introduction to Linear Algebra (Student Mathematical Library) | 65 |
Harary F. — Graph Theory | 171 |
Mullin T. — The nature of chaos | xi, 5 |
Cheng T.-P., Li L.-F. — Gauge Theory of Elementary Particle Physics | 82-3 (see also renormalization group) |
C. Caratheodory, F. Steinhardt — Theory of Functions of a Complex Variable. 2 Volumes | 32 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 149, 220 |
Šimša J., Kucčra R., Herman J. — Counting and Configurations: Problems in Combinatorics, Arithmetic, and Geometry | 82 |
Thron W. — Introduction to the theory of functions of a complex variable | 196 |
Reeves C.R., Rowe J.E. — Genetic Algorithms: Principles and Perspectives. A Guide to GA Theory | 257 |
Onishchik A.L. (ed.) — Lie Groups and Lie Algebras | 100 |
Blom G., Holst L., Sandell D. — Problems and Snapshots from the World of Probability | 50, 98 |
Marks R.J.II. — The Joy of Fourier | 548, 600, 608 |
Cairns S.S. — Introductory topology | 136 |
Guckenheimer J., Holmes Ph. — Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42 | 3, 12 |
Ortega J. M. — Iterative Solution of Nonlinear Equations in Several Variables | 119 |
Valentine F.A. — Convex Sets | 207 |
Kreyszig E. — Introductory functional analysis with applications | 299, 323 |
Argyros I. — Computational Theory of Iterative Methods | 47 |
Lefschetz S. — Introduction to topology | 117—118 |
Gumowski I., Mira Ch. — Recurrences and Discrete Dynamic Systems | 8, 15, 29 |
Ortega J.M. — Numerical analysis: a second course | 144 |
Weinberg S. — The Quantum Theory of Fields. Vol. 2 Modern Applications | 133, 145—148 |
Zhang B. G., Yong Z. — Qualitative analysis of delay partial difference equations | 282, 302 |
Aliprantis C. — Principles of real analysis | 55 |
Kinsey L.C. — Topology of surfaces | 32, 200 |
Finkbeiner D.T. — Introduction to Matrices and Linear Transformations | 127 |
Spanier E.H. — Algebraic Topology | 151, 194—197 |
Franklin G.F., Workman M.L., Powell J.D. — Digital Control of Dynamic Systems | 426 |
IItaka S. — Algebraic Geometry: An Introduction to Birational Geometry of Algebraic Varieties | 130 |
Gallavotti G. — Foundations of fluid mechanics | 424 |
Onishchik A.L. (ed.) — Lie Groups and Lie Algebras (volume 1) | 100 |
Devaney R.L., Keen L. — Chaos and Fractals: The Mathematics Behind the Computer Graphics | 4, 28 |
Munkres J.R. — Topology: A First Course | 158 |
Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 500 |
Gorbatsevich V.V., Vinberg E.B., Onishchik A.L. — Foundations of Lie theory and Lie transformation groups | 100 |
Fluegge S. (ed.) — Encyclopedia of physics. Vol. 9. Fluid dynamics III | 117, 119, 121 |
Lefschetz S. — Introduction to Topology | 117—118 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 7.1. 98, 8 3.1. 200 |
Stewart G.W. — Afternotes on Numerical Analysis | 21 |
Chaikin P., Lubensky T. — Principles of condensed matter physics | 245, 251, 262, 267—9, 671, 548, 573, 634, 669 |
Alicki R., Lendi K. — Quantum Dynamical Semigroups And Applications | 58 |
Tzenov S.I. — Contemporary Accelerator Physics | 56, 92 |
Saito Y. — Statistical physics of crystal growth | 137 |
Farmer D.W. — Groups and symmetry: A guide to discovering mathematics | 23 |
Silverman J. — The arithmetic of dynamical systems | 18 |
Wiedemann H. — Particle accelerator physics II | 22, 211 |
Beckenbach E.F. (ed.) — Applied Combinatorial Mathematics | 417, 424 |
Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 181, 279 |
Reithmeier E. — Periodic Solutions of Nonlinear Dynamical Systems: Numerical Computation, Stability, Bifurcation and Transition to Chaos | 3, 6 |
Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 56 |
Hinman P.G. — Fundamentals of Mathematical Logic | 488, 524 |
Antes H., Panagiotopoulos P.D. — The boundary integral approach to static and dynamic contact problem | 189, 237 |
Benfatto G., Gallavotti G. — Renormalization Group | 62, 67, 69 |
Fuzhen Zhang — Matrix theory: basic results and techniques | 143 |
Schwarzenbach D. — Crystallography | 29 |
Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 269 |
Du D.-Z., Ko K.-I. — Theory of computational complexity | 170, 174 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 19 |
Intriligator M.D. — Mathematical optimization and economic theory | 457 |
Henkel M. — Conformal Invariance and Critical Phenomena | 11 |
Suppes P.(ed.) — Handbook of Proof Theory.Studies in logic the foundations of mathematics.Volume 137. | 269, 399 |
Vafa C., Zaslow E. — Mirror symmetry | 57 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 116 |
Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 425, 464, 475 |
Blomberg H.( ed.) — Algebraic theory for multivariable linear systems, Volume 166 | 63 |
Tourlakis G.J. — Lectures in Logic and Set Theory: Set Theory | 351, 438 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | II 346 |
Vidyasagar M. — Nonlinear systems analysis | 28 |
Kuczma M. — Functional equations in a single variable | 14, 24, 222 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 172 |
Floret K. — Weakly Compact Sets | 90 |
Benjamin A.T., Quinn J. — Proofs That Really Count The Art of Combinatorial Proof | 114 |
Kardar M. — Statistical physics of fields | 64, 90, 106, 111 |
Mantegna R.N., Stanley H.E. — An introduction to econophysics: correlations and complexity in finance | 21 |
Sachkov V.N. — Combinatorial methods in discrete mathematics | 11 |
Meyer K.R. — Periodic Solutions of the N-Body Problem | 73—75 |
Fine B., Rosenberger G. — Algebraic Generalizations of Discrete Groups: A Path to Combinatorial Group Theory Through One-Relator Products | 78 |
Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 13, 18—22 |
McGettrick A.D. — The Definition of Programming Languages | 217—218, 226 |
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 140 |
Goldblatt R. — Axiomatising the Logic of Computer Programming | 53 |
Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 332 |
Davies P. — The New Physics | 309 |
Morgan D. — Numerical Methods Real-Time and Embedded Systems Programming by Don Morgan Index | 15, 17, 33, 86, 206 |
Singh R., Manhas J. — Composition Operators on Function Spaces (North-Holland Mathematics Studies) | 56 |
Bonahon F. — Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries) | 358 |
Whyburn G.T. — American mathematical society colloquium publications. Volume XXVIII | 240 |
Scheinerman E.A. — Mathematics: A Discrete Introduction | 279 |
Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics | 81 |
Ñåðãèåíêî À.Á. — Öèôðîâàÿ îáðàáîòêà ñèãíàëîâ. Ó÷åáíèê äëÿ âóçîâ. | 374 |
Falconer K. — Fractal geometry: mathematical foundations and applications | 125, 186, 216 |
Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 231 |
Griewank A. — Evaluating derivatives: principles and techniques of algorithmic differentiation | 298 |
BertsekasD., Tsitsiklis J. — Neuro-Dynamic Programming (Optimization and Neural Computation Series, 3) | 134 |
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 140 |
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 13, 113, 122, 196, 200, 333 |
Plischke M., Bergersen B. — Equilibrium statistical physics | 237, 240—248, 251, 252, 263, 278, 290 |
Landau L., Sykes J. — Fluid Mechanics: Vol 6 (Course of Theoretical Physics) | 118 |
Davis R.E. — Truth, Deduction, and Computation: Logic and Semantics for Computer Science | 184 |
Klein E. — Mathematical methods in theoretical economics | 121—123 |
Schiffer M.M. — The role of mathematics in science | 53—55, 125, 126 |
Abramsky S., Barwise J., Fine K. — Recursive Functionals. Studies in Logic and the Foundations of Mathematics Volume 131 | 9 |
Hrbacek K., Jech T. — Introduction to Set Theory, Third Edition, Revised, and Expanded (Pure and Applied Mathematics (Marcel Dekker)) | 69 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 15 |