Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Guckenheimer J., Holmes Ph. — Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42
Guckenheimer J., Holmes Ph. — Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42

Àâòîðû: Guckenheimer J., Holmes Ph.

Àííîòàöèÿ:

From the reviews: "This book is concerned with the application of methods from dynamical systems and bifurcation theories to the study of nonlinear oscillations. Chapter 1 provides a review of basic results in the theory of dynamical systems, covering both ordinary differential equations and discrete mappings. Chapter 2 presents 4 examples from nonlinear oscillations. Chapter 3 contains a discussion of the methods of local bifurcation theory for flows and maps, including center manifolds and normal forms. Chapter 4 develops analytical methods of averaging and perturbation theory. Close analysis of geometrically defined two-dimensional maps with complicated invariant sets is discussed in chapter 5. Chapter 6 covers global homoclinic and heteroclinic bifurcations. The final chapter shows how the global bifurcations reappear in degenerate local bifurcations and ends with several more models of physical problems which display these behaviors." Book Review - Engineering Societies Library, New York "An attempt to make research tools concerning 'strange attractors' developed in the last 20 years available to applied scientists and to make clear to research mathematicians the needs in applied works. Emphasis on geometric and topological solutions of differential equations. Applications mainly drawn from nonlinear oscillations." American Mathematical Monthly


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 484

Äîáàâëåíà â êàòàëîã: 25.04.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$C^{k}$ eigenvalence      38 (Definitions 1.7.2—1.7.3)
$C^{k}$ perturbation of size $\varepsilon$      38 (Definition 1.7.1)
$C^{k}$-conjugacy      38 (Definitions 1.7.2—1.7.3)
$\alpha$-limit point, $\alpha$-limit set      34 235 236
Address      307
Anosov diffeomorphisms      20—21 261—262
Area preserving maps      216—226
Arnold diffusion      220
Asymptotic measure      283
Asymptotically stable (fixed point)      3—4
Attracting set      34 75 91 92 256—259
Attractor      36 256—257 Definition 259—261
Autonomous (differential equation, dynamical system)      2
Autonomous averaged system      (see Averaged system)
Averaged system      161
Averaging (method of)      68 153 166—184 206
Averaging theorem      168 (Theorem 4.1.1)
Badly approximated (irrational numbers)      303
Band mergings      348
Basin of attraction      (see Domain of attraction)
Bendixson’s criterion      44 (Theorem
Bi-infinite (symbol) sequence      233
Bifurcation diagram      105—106 118—120
Bifurcation set      71 119
Bifurcation value (bifurcation point)      71 105 117 119
Blowing up (a degenerate singularity)      362—364 368
Bouncing ball (model for the dynamics of)      102—116 (Section 2.4)
Bouncing ball (model for the dynamics of), hyperbolic invariant set      242—245
Boundary layer      69
Branch of equilibria      118—119
Branched manifold      262
Bridge (of a Cantor set)      333
Cantor book      219
Cantor set      88 110 229 232 258 266 285—286 332—334
Capacity      285 (Definition 5.8.3)
Catastrophe theory      356—357
Center      4
Center manifold      123—138 (Section 3.2)
Center manifold theorem      121 (Theorem 3.2.1)
Center manifold, approximation of      130—138 (Theorems 3.2.2—3.2.3)
Center manifold, definition of      124
Center manifold, loss of smoothness of      124—127 380—381
Center manifold, nonuniqueness of      124—125
Center subspace (eigenspace) for flows      10—12
Center subspace (eigenspace) for maps      11
Central point, restrictive central point      272
Chain recurrent point, set      236 (Definition 5.2.3)
Characteristic (Floquet) multipliers, exponents      25
Closed orbit      15—16
Codimension (of a bifurcation point)      123
Codimension (of an embedded submanifold)      120
coin tossing      227—228
Continuous dependence on initial conditions      7
Critical point (one-dimensional maps)      306
Cross section (Poincare section)      23 26
Defining sequence (of a Cantor set)      333
Denjoy’s theorem      301—302 (Theorem 6.2.5)
Differential equation      1—2
Diophantine conditions      140 220 302—303
Discrete dynamical system (map, mapping)      16—22
Dissipative saddle point      326
Distortion (of a one-dimensional map)      341 (Definition
Domain of attraction      34 111—114
Drifting oscillations      71
Duffing’s equation      22 82—91 (Section 173—177 191—193 198—201 267
Eigenspace      9—12
Eigenvector      9—12
Entrainment      71 305
Entrainment domain      74
Entropy (topological entropy)      281—288 (Definitions 5.8)
Equilibrium point, equilibrium solution      3 12
Equivalence relations      38—42
Equivariant vector fields      144 150
Ergodic theory      281—283
Exchange of stability      (see Transcritical bifurcation)
Existence and uniqueness theorem (differential equations)      3 7
Exponential smallness (of Melnikov functions)      211—212
First return (Poincare) map      23—32
Fixed point      3 12
Flip (period doubling) bifurcation      86 105 111 157—160 (Theorem 311 346—349
Floquet theory and Poincare maps      24—25
Flow      2
fold      (see Saddle-node bifurcation)
Frequency response function (forced oscillations)      174—175
Full family      272 307
Fundamental solution matrix      9
Galerkin method      84 417
Gap (of a feantor set)      333
General position (transversal intersection)      120
Generalized Hopf bifurcation      359
Generic properties (reference to)      41
Global bifurcation      88 117 149 289—352 (Chapter 353—420 (Chapter
Globally asymptotically stable (fixed point)      5
Gradient system, gradient vector field      49—50
Gronwall’s inequality      169 (Lemma
Hamiltonian system      46 182—185 193—226
Hartman-Grobman (linearization) theorem for flows      13
Hartman-Grobman (linearization) theorem for maps      18
Hausdorff dimension      285—288 (Definitions 5.8.4) 333
Henon map      245 (Exercise 267 268—269 273
Heteroclinic orbit, point      22 45 46 290—291
Homoclinic bifurcation      190—191 292—293 (Theorem 325—331
Homoclinic cycle      45
Homoclinic orbit (point)      22 45 47 86 88 101—102 114 182—193 222 252 291—295 313 318—342
Homoclinic tangency      183—184 190—193 325—342 (Sections
Homoclinic tangle      222 247—248
Hopf bifurcation and averaging      178—180 (Theorem 4.3.1)
Hopf bifurcation for flows      73 93 150—156
Hopf bifurcation for maps      160—165 (Theorem 3.5.2) 305—306
Hopf bifurcation, generalized Hopf bifurcation      358—360
Horizontal curve, strip      239—240
Horseshoe (map)      106—111 188 230—235 318—325
Hyperbolic fixed point      17
Hyperbolic set structure      228 238—248 (Definition
Indecomposable (invariant set)      237 (Definition
Independence      281
Index (Poincare index)      50—53
Induced map      341
information      281
Initial condition      2
Initial condition, continuous dependence on      7 (Theorem 1.0.4)
Integrable (Hamiltonian) system      185 216
Intermittency      343—346
Invariant coordinate      307
Invariant manifold      (see Invariant set Stable Unstable
Invariant measure, probability measure      271 280
Invariant set      33 108—109 235
Invariant subspace (eigenspace)      10—12
Invariant torus      58—60 183 182 218—222 298—299
Inverse limit construction      264
Isocline      53—56
Isoenergetic nondegeneracy      219 (Exercise
Itinerary      307
Jordan form      9
k-jets (truncated Taylor series)      360—364
Kneading sequence      307
Kneading theory (kneading calculus      306—311 (Section 6.3)
Kolmogorov-Arnold-Moser (KAM) theory      138 182 218—226 (Theorem 303 350
Lambda lemma      247 (Theorem
Liapunov exponent (Liapunov number)      283—288 (Definition
Liapunov function      4—7 49
Limit set      15 34
Linearization (Hartman-Grobman theorem)      12—13 (Theorem
Lipschitz, Lipschitz constant      3
Local bifurcation      117 117—165 (Chapter
Lorenz attractor      (see Lorenz equations)
Lorenz equations      92—102 (Section 128—130 273—279 (Section 312—318 (Section
Lozi map      267
Markov partition      248—255 (Definition 314
Mathieu equation      29—32
Measure      (see Asymptotic measure Invariant Probability
Melnikov function      187
Melnikov function for subharmonics      195
Melnikov function, exponential smallness of      211—212
Melnikov theory (Melnikov’s method      184—226 (Sections 369—370
Morse sequence      346—347
Morse — Smale system      64
Multiplicative ergodic theorem      284
Neutral stability      4
Newhouse sinks      88 91 111 331—342
Nondegenerate (hyperbolic) fixed point      13
Nonintegrable Hamiltonian system      224
Nonwandering point, set      33 236 (Definition
Normal forms (of degenerate k-jets) for flows      138—145 (Section
Normal forms (of degenerate k-jets) for maps (Hopf bifurcation)      161—165
Normal forms (of degenerate k-jets) for multiple bifurcations      358 365 377 397 (Chapter
Normal modes (modes of vibration)      58 83 215
One-dimensional maps      268—273 (Section 306—311 (Section
Orbit      2
Orientation preserving/reversing (map)      20
Panel flutter      414—419
Peixoto’s theorem      60—62 (Theorem
Period doubling bifurcation      86 105 111 157—160 (Theorem 311
Period doubling sequences (cascades)      346—349
Period three implies chaos      309 (Exercise 311
Periodic orbit      15—16
Phase locking      71 305
Pitchfork bifurcation      85 93 149—150 157
Plykin attractor      264—266
Poincare index      50—53
Poincare map      22—32 (Section
Poincare map, averaging and      161—171
Poincare — Bendixson theorem      44 (Theorem 69
Potential function      49
Power spectrum      87 88 349
Preturbulence      315
Probability measure      280
Proposition      5 3 3
Pseudo-orbits      250
Quadratic tangencies      (see Homoclinic tangencies)
Quasiperiodic orbits      160 349—352
Rectangle (Markov partition)      249 (Definition
Reduced Hamiltonian system      214
Reduced system (restricted to the center manifold)      130—138
Reduction of Hamiltonian systems      213—215
Reflection hyperbolic (fixed point)      105
Relaxation oscillations      69
Renormalization      342—352
Repelling set      34
Repellor      36
Resonance of order k (forced oscillations)      173 195 199
Resonant terms (in normal forms)      140 162
Resonant wedge      303
Restrictive central point      273
Rotation number      163 295—306 (Section
Rotation number, definition of      296 349—352
Saddle (points) of the first (second) kind for maps      105
Saddle connection, saddle-loop (heteroclinic and homoclinic orbits)      46—48 73—74 86 101—102 185 290—295 313
Saddle point      4
Saddle-node bifurcation      73 105 111 145 146—149 (Theorem 157
Saddle-node bifurcation and averaging      178—180 (Theorem
Saddle-node bifurcation and averaging in Melnikov’s theory      197 (Theorem 4.6.3) 343—346
Sarkovskii’s theorem      311 (Theorem
Schwarzian derivative      270 306
Semiflow      94
Sensitive dependence on initial conditions      80 98 188
Shadowing      250—251
Shadowing lemma      251
Shift map (symbolic dynamics)      78 234 251
Silnikov’s (homoclinic) theorem      318—325 (Theorem
Singer’s theorem (one-dimensional maps)      300 (Theorem
Singularity theory      354—355
Sink      4
Smale horseshoe      (see Horseshoe)
Smale — Birkhoff homoclinic theorem      188 252 253 (Theorem
Small divisors      163 220 302—303
Solenoid      264
Solution curve      2
Source      4
Stability dogma      259
Stable fixed point      3—4
Stable foliation      96—97 264—267 274 312
Stable manifold theorem for flows      13—14 (Theorem 1.3.2)
Stable manifold theorem for hyperbolic sets      246—247 (Theorem 5.2.8)
Stable manifold theorem for maps      18 (Theorem
Stable manifold, global      14 18
Stable manifold, local      13 18
Stable subspace (eigenspace) for flows      10—12
Stable subspace (eigenspace) for maps      17
Stationary solution      12
Stochastic layer      222 226
Strange Attractor      86—91 255—259 (Definition
Structural stability      38—42 (Section (Definition 88 258—259
Subcritical and supercritical bifurcations      93 150 158—160
Subharmonic      27 74 193—212 223
Subharmonic bifurcation      197 (see also Flip bifurcation)
Subharmonic Melnikov function      195
Subshift of finite type      251 264
Symbol sequences      78 233
Symbolic dynamics      77—79 228—230 232—234 264 317—318
Symmetry groups (and bifurcations)      (see Equivariant vector fields)
Thermohaline convection      412—414 417—419
Thickness (of Cantor sets)      333
Time average      282 (Definition
Time-dependent perturbation      260
Time-dependent stable      260
Topological conjugacy      (see Topological equivalence)
Topological dimension      261
Topological equivalence      38 (Definition 1.7.2)
Topologically transitive (invariant set)      237 (Definition
Trajectory      2
Transcritical bifurcation (exchange of stability)      145 149—150 197
Transition matrix      78 251 253 264—266 314—315
Transversal homoclinic orbits      88—89 113—114 183—184 188 222 247—248
Transversal intersection (of invariant manifolds)      50
Transversality (theorem)      120—123
Trapping region      34—35 114
Twist mapping      218 219—223
Twist theorem (for area preserving maps)      219—220 (Theorem
Unfolding (of a bifurcation point)      123 354—358 365
Universal structures      342—352
Universal unfolding      365 371
Unstable manifold global      14 18
Unstable manifold, local      13 18
Unstable subspace (eigenspace) for flows      10—12
Unstable subspace (eigenspace) for maps      17
Van der Pol’s equation      67—82 (Section 253—255
Vector field      2
Vertical curve, strip      239—240
Wild hyperbolic sets      191 331—342 (Section
Zero      3 12
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå