Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Bonahon F. — Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries)
Bonahon F. — Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries)

Àâòîð: Bonahon F.

Àííîòàöèÿ:

The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2009

Êîëè÷åñòâî ñòðàíèö: 392

Äîáàâëåíà â êàòàëîã: 12.09.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$B_{d}(P, r)$, a ball in a metric space      4
$Id_{X}$, the identity map of X      357
$\mathbb{B}^{2}$, the disk model for the hyperbolic plane      36 36—39 43 44 101 158—160 209 212 216 223
$\mathbb{C}$, the set of all complex numbers      356 361—364
$\mathbb{H}^{2}$, the hyperbolic plane      11 11—46
$\mathbb{H}^{3}$, the 3-dimensional hyperbolic space      227 227—240
$\mathbb{N}$, the set of all positive integers      356
$\mathbb{Q}$, the set of all rational numbers      356
$\mathbb{R}$, the set of all real numbers      356
$\mathbb{R}^{2}$, the euclidean plane      1—10 357
$\mathbb{R}^{3}$, the 3-dimensional euclidean space      4 357
$\mathbb{S}^{2}$, the 2-dimensional sphere      47
$\mathbb{S}^{3}$, the 3-dimensional sphere      343 351
$\mathbb{Z}$, the set of all integers      356
Absolute value      23 362
Action of a group      185 185—205 248
Adjacent tiles      137 137—146 261
Alexander, James Waddell II (1888-1971)      318
Antilinear fractional map      27 27—33 38 186 231—235
Antipodal points      49 102
Arc length      see "Length"
Area      131
Area, hyperbolic area      43 43—44
Area, spherical area      53 182
Ball, ball in $\mathbb{R}^{3}$      5 344
Ball, ball in a metric space      4 42—43 68—79 240 262
Ball, ball model for the hyperbolic space      236 240
Belong to      355
Bijection      5 90 185 357
Bijective      357
Bonahon, Francis      iii
Bonnet, Pierre Ossian (1819-1892)      131
Boundary, boundary of a manifold      348
Boundary, boundary point      152
Bounded      62 81 152 152 161
Brock, Jeffrey F.      283
Bromberg, Kenneth W.      282
Busemann, Busemann function      178 183
Busemann, Busemann, Herbert (1905-1994)      178
Canary, Richard D.      283
Cannon, James W.      302
Canonical tile      143 143—146
Cauchy, Cauchy sequence      135 182
Cauchy, Cauchy, Augustin (1789-1857)      182 211
Cayley, Arthur (1821-1895)      45
Center, center of a horocircle      172 214
Center, center of a horosphere      234
Cerf, Jean      318
circle      5 17—22 32—33 38 48 85—87 172 207—212 230 288 317
Circle, great circle      48 129
Circle, great circle arc      49 50—51
Closed, closed curve      49 316
Closed, closed geodesic      49 127—129 204
Closed, closed subset      62 80 152 152—154 250—251 257—258 286
Compact metric space      150 150 154 182 203 251 348
Companion knot      321
Complement      356
Complement, knot complement      293—313 319—340 352—354
Complete, complete geodesic      21
Complete, complete metric space      135 147—155 174 182 183 203 230 260 311 322 325 341 346 348
Complex number      6 11 23 361 361—364
Complex number, complex conjugate      6 23 44 362
Complex number, complex exponential      242 364 362 364
composition      6 15 28 42 51 52 185 186 357
Cone      86
Cone, surface with cone singularities      87 125—126 136 192 205 342
conjugate      see "Complex conjugate"
Connected      64 341
Continued fraction      224
Continuous function      4 8 9 61 90 151 302 360
Convergence      4 135 147—155 360
Convergence, limit at infinity      361 360—361
Convergence, toward infinity      361 360—361
Convex, euclidean polygon      62
Convex, hyperbolic polygon      82
Convex, spherical polygon      82
Crossratio      44—45
Differential map      29 29—38 40 49—50 229—230 317
Dihedral angle      235 259 259—265 290
Dihedron      235
Dirichlet, Dirichlet domain      198 197—201
Dirichlet, Lejeune Dirichlet, Gustav (1805-1859)      198
Discontinuity domain      286—287
Discontinuous group action      189 189—197 203—205 248 254 260 268 280—283 286 313
Discrete walk      58 58—60 69—79 85—86
Disjoint sets      356
Disk, disk in the plane      5
Disk, disk model for the hyperbolic plane      36 36—39 43 44 101 158—160 209 212 216 223
Disk, disk sector      72 86 205
Distance, distance function      3
Distance, euclidean distance      2 1—3 8 340
Distance, hyperbolic distance      12 12—14 37 39 44 45 228
Distance, signed distance      218—220 253 253—254
Distance, spherical distance      48 343
Domino diagram      225 291
Dumas, David      282
Dunne, Edward G.      xv
Earle, Clifford J.      280
Edge of a hyperbolic polyhedron      258 258—265
Edge of a polygon      61 61—83 257
Edge, edge cycle      172 172—181
Element of a set      355
Elliptic isometry      41 239 240
Empty set      355
Epstein, David B.A.      340
Equivalence class      84
Equivalence relation      84
Essential surface      343—346
Essential surface, essential Klein bottle      345
Essential surface, essential projective plane      344
Essential surface, essential sphere      344
Essential surface, essential torus      344
Euclidean, euclidean distance      2 3 340
Euclidean, euclidean geodesic      3 21
Euclidean, euclidean isometries      5—7 39
Euclidean, euclidean length      2 48
Euclidean, euclidean metric      67 340
Euclidean, euclidean norm      33
Euclidean, euclidean plane      1—10
Euclidean, euclidean polygon      61 61—66 183
Euclidean, euclidean space      340 349
Euclidean, euclidean surface      67 89—97 103—104 341 343
Euclidean, euclidean triangle      125
Euler, Euler characteristic      131
Euler, Euler exponential notation      6 362
Euler, Euler, Leonhard (1707-1783)      131 362
Exceptional fiber      347
Exponential, complex exponential      242 364 362—364
Exterior point      152
Face of a polyhedron      258 257—265 334—340
Farey, crooked Farey tessellation      243 241—247 265—265 279 291—297
Farey, Farey circle packing      210 207—226
Farey, Farey series      223
Farey, Farey sum      209
Farey, Farey tessellation      210 207—226
Farey, Farey, John (1766-1826)      210
Fiber      347
Fibration      see "Seifert fibration"
Fields medal      322 350
Figure-eight knot      303 293—313 352 353
Finite volume      324
fix      358
Fixed point      358
Ford, Ford circles      212
Ford, Ford domain      331 326—340
Ford, Ford, Lester Randolph (1886-1967)      212 340
Free group action      192 264 280—282 297 352
Fuchs, Lazarus Immanuel (1833-1902)      284
Fuchsian group      255 252—257 280 283—284
Fuchsian group, fuchsian group of the first type      256
Fuchsian group, fuchsian group of the second type      256
Fuchsian group, twisted fuchsian group      288
Function      357
Fundamental domain      192 185—205 259 259—269 296—298
Gauss — Bonnet formula      131
Gauss, Johann Carl Friedrich (1777-1855)      131
Generate transformation group generated by bijections      135—136 186 194 260
Genus      97 129
Geodesic      21
Geodesic, closed geodesic      49 127—129 204
Geodesic, complete geodesic      21
Geodesic, euclidean geodesic      3 21
Geodesic, hyperbolic geodesic      17 22 230
Geodesic, spherical geodesic      49—51
Geometric structure      349
Gordon, Cameron McA.      340
Great circle      48 129
Great circle arc      49
Group      185 185—205
Group, abstract group      202
Group, fuchsian group      255 252—257 280 283—284
Group, group action      185 185—205
Group, group of isometries      186
Group, isometry group      186
Group, kleinian group      248 241—302 326—340
Group, tiling group      136 135—184 212—222 259
Group, transformation group      185 185—205
Haken, Wolfgang      350
Hamilton, Richard S.      350
Haros, C.      211
Hatcher, Allen E.      318
Hiatt, Christopher      xvi
Homeomorphic      90
Homeomorphism      41 90 91 96—98 126 129 130 182 270 288 303—311 317—319 325
Homogeneous      7 15—16 34—36 49—50 128 129 230 349
Homothety      15 28 40 228 239 286
Horizontal translation      15 28 41 228 239
Horocircle      172 172—181 214—222 290
Horocycle      172
Horocyclic isometry      172 172—176 221—222
Horodisk      178 178—180 256
Horosphere      234 234—235 260—265 268 298 331—332
Howe, Roger E.      xv
Hyperbolic, hyperbolic area      43 43—44
Hyperbolic, hyperbolic disk      42
Hyperbolic, hyperbolic distance      12 12—14 37 39 44 45 228
Hyperbolic, hyperbolic geodesic      17 22 230
Hyperbolic, hyperbolic isometry      14—17 25 23—27 40 232 231—231 234 238 239
Hyperbolic, hyperbolic knot      322 322—340
Hyperbolic, hyperbolic length      11 17—22 33—34 227 230
Hyperbolic, hyperbolic metric      12 12—14 37 39 44 45 82 228
Hyperbolic, hyperbolic norm      33 33—36 228 229
Hyperbolic, hyperbolic plane      11 11—46 234
Hyperbolic, hyperbolic polygon      80
Hyperbolic, hyperbolic reflection      15 240
Hyperbolic, hyperbolic rotation      40
Hyperbolic, hyperbolic space      227 227—240 349
Hyperbolic, hyperbolic surface      82 102 341—343
Hyperbolic, hyperbolic triangle      43 98 125 130
Hyperbolic, hyperbolic volume      240 353
Ideal, ideal polygon      116
Ideal, ideal vertex      116 170 170—180 257 258 257—265
identity map      185 357
Image      357
Imaginary part      11 362
Infimum (pl. infima)      359 358—360
Infinite limit      361 360—361
Infinity, limit at infinity      361 360—361
Infinity, vertex at infinity      170 170—180 257 258 257—265
Injective      357
Interior, interior of a manifold      348
Interior, interior point      152
Intersection      356
Inverse map      185 357
Inversion across a circle      16 16—17 28 28 42
Inversion across a sphere      229 237
Isometric, isometric extension      233 231—233 236
Isometric, isometric group action      186
Isometric, locally isometric      67
Isometry      5
Isometry, elliptic isometry      41 239
Isometry, euclidean isometries      5 7 39
Isometry, group of isometries      186
Isometry, horocyclic isometry      172 172—176 221—222
Isometry, hyperbolic isometry      14—17 25 23—27 40 232 231—234 238 239
Isometry, isometry group      186
Isometry, loxodromic isometry      40 239
Isometry, parabolic isometry      41 239 327
Isometry, spherical isometries      50
Isomorphic knots      317
Isotopic knots      316
Isotopy      316
Isotropic      7 34—36 49—50 230 349
Jaco, William H.      321 350
Jacobian      238 317
Johannson, Klaus      321 350
Klein, Klein bottle      95 93—95 128 341
Klein, Klein bottle, essential Klein bottle      345
Klein, Klein, Felix (1849-1925)      45 95 284
Kleinian group      248 241—302 326—340
Kneser, Hellmuth (1898-1973)      350
Knot      316
Knot, companion knot      321
Knot, figure-eight knot      303
Knot, hyperbolic knot      322 322—340
Knot, knot complement      293—313 319—340 352—354
Knot, satellite knot      321
Knot, torus knot      319
Knot, trefoil knot      319
Knot, unknot      317
Length, euclidean length      2 48
Length, hyperbolic length      11 17—22 33—34 227 230
Length, length in a metric space      3 9 87 127
Length, length of a discrete walk      58
Length, length of a sequence      135 147—155
LIMIT      4 135 147—155
Limit, limit at infinity      361 360 361
Limit, limit point      248
Limit, limit set      248 247—252 255—256 270—279 299—302
Linear fractional map      27 27 33 38 186 231—235
Linear groups      202
Listing, Johann Benedict (1808-1882)      104
Little, Charles N.      337
Locally finite      134 145 197 259 261 333 334
Locally isometric      67 82 83
Loxodromic isometry      40 239
Luecke, John      340
Manifold      340 340—351
MAP      357
Marden, Albert      296
Maximum (pl. maxima)      358 358—360
McMullen, Curtis T.      322
Metric      3
Metric, euclidean metric      67 340
Metric, hyperbolic metric      12 12—14 37 39 44 45
Metric, metric function      3
Metric, metric space      3 3—5 58—61 134—135 150—155
Metric, path metric      9 63 81 82
Metric, product metric      8 344
Metric, quotient metric      61 58 61 141—143 187—189
Metric, spherical metric      48 343
Milnor, John W.      350
Minimum (pl. minima)      358 358—360
Minsky, Yair N.      282 283
Moduli space      342
Modulus (pl. moduli)      23 362
Moebius strip      341
Moebius, Moebius group      237
Moebius, Moebius strip      104 103—104
Moebius, Moebius transformation      237
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå