Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bonahon F. — Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries)
Bonahon F. — Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries)

Автор: Bonahon F.

Аннотация:

The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2009

Количество страниц: 392

Добавлена в каталог: 12.09.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Moebius, Moebius, August (1790-1868)      104
Mostow, Mostow's Rigidity Theorem      325 324—326 336
Mostow, Mostow, George Daniel      325
Nonorientable surface      104 129
Norm, Euclidean norm      33
Norm, hyperbolic norm      33 33—36 228 229
Normal subgroup      299 299—302
Once-punctured torus      114 114—125 161—162 167—169 212—214
One-to-one correspondence      357
One-to-one map      357
Onto      357
OPTi      246 280
Orbifold      342
Orbit      187 187—192 198 248
Orbit space      187 187—192
Orientation-preserving      238 317
Orientation-reversing      238 317
Orlik, Peter      347
Orthogonal projection      40 253
Parabolic isometry      41 239 327
Parabolic point      327
Partition      57 57—87 187—192
Partition, proper partition      60
Path metric      9 63 81 82
Penner, Robert Clark      340
Perelman, Grigory Y.      350
Perko, Kenneth A.      338
Perpendicular bisector      39 198
Piecewise differentiable curve      2
Plane, euclidean plane      1—10
Plane, hyperbolic plane      11 11—46 234
Plane, projective plane      102 129 341
Plane, projective plane, essential projective plane      344
Poincare, Poincare Conjecture      351
Poincare, Poincare's Polygon Theorem      174 169-181
Poincare, Poincare's Polyhedron Theorem      260 257-265
Poincare, Poincare, Jules Henri (1854-1912)      283 351
Polygon      61—87 89—131 133—184 192—201 335
Polygon, euclidean polygon      61 61—66 183
Polygon, hyperbolic polygon      80 257
Polygon, ideal polygon      116
Polygon, locally finite polygon      197
Polygon, spherical polygon      82
Polyhedral ball sector      261
Polyhedron (pl. polyhedra)      258 257—265
Prasad, Gopal      325
Preimage      358
Preserve      358
PRODUCT      8 357
Product, product metric      8 344
Projective, projective line      42
Projective, projective linear groups      202
Projective, projective model for the hyperbolic plane      45
Projective, projective plane      102 129 341
Projective, projective plane, essential projective plane      344
Projective, projective space      202
Proper, proper gluing      60
Proper, proper partition      60
Pseudosphere      108 108—114 118—125
Pythagorean triple      223
Quotient, quotient map      61
Quotient, quotient metric      61 58—61 141—143 187—189
Quotient, quotient space      60 58—61 187 187—197
Real part      11 362
Reflection, euclidean reflection      6 50 52
Reflection, hyperbolic reflection      15 240
Regular curve      316
respect      358
Restriction      358
Riemann, Riemann sphere      27 41 241—241 252 276—279
Riemann, Riemann, Georg Friedrich Bernhard (1826-1866)      27
Riley, Robert F. (1935-2000)      312 340
Rotation, euclidean rotation      6 49—52
Rotation, hyperbolic rotation      40
Rotation, rotation-reflection      50 51 52
Satellite knot      321
Schubert, Horst (1919-2001)      321
Seifert, Seifert fibration      347 354
Seifert, Seifert manifold      347
Seifert, Seifert, Herbert Karl Johannes (1907-1996)      347
Semi-distance function      3
Semi-metric      3 58—61 84 187 189 202
SEQUENCE      358
Set      355
Shalen, Peter B.      321 350
Shear parameter      220 290
Shear-bend parameter      265 289
shearing      220
Siebenmann, Laurence C.      322
Signed distance      218—220 253 253—254
Simple curve      316
SnapPea      323 335 337 339
Sphere      5 47 341
Sphere, 3-dimensional sphere      343 349 351
Sphere, essential sphere      344
Spherical, spherical area      53 182
Spherical, spherical distance      48 343
Spherical, spherical geodesic      49—51
Spherical, spherical isometries      50
Spherical, spherical metric      48 84 343
Spherical, spherical polygon      82
Spherical, spherical surface      84 341 343
Spherical, spherical triangle      52 125
Stabilizer      190 190—192 204—205
Stereographic projection      41
Subsequence      150 150—155
Subset      355
Supremum (pl. suprema)      358 358—360
surface      341
Surface in a 3-dimensional manifold      344
Surface, euclidean surface      67 89—97 103—104 341—343
Surface, hyperbolic surface      82 102 341—343
Surface, nonorientable surface      104 129
Surface, spherical surface      84 341—343
Surface, surface of genus      2 97 97—102
Surface, surface of genus g      129
Surface, two-sided surface      344
Surjective      357
Tangent line      276
Tangent map      29
Tessellation      133 133—184 207—226 259 259—265
Thurston, William P.      302 312 322 350
Tile      133 133—184
Tiling group      136 133—184 212 222 259
Tiling groupoid      147
Topologically equivalent      311 322 341 348
Topology, induce the same topology      311 322 341 348
Torus (pl. tori)      56 91
Torus (pl. tori), essential torus      344
Torus (pl. tori), once-punctured torus      114 114—125 161—162 167—169 212 214
Torus (pl. tori), torus knot      319
Tractrix      108
Transformation group      185 185 205
Translation, euclidean translation      5
Translation, horizontal translation      15 28 41 228 239
Trefoil knot      319
Triangle, euclidean triangle      125
Triangle, hyperbolic triangle      43 98 125 130
Triangle, spherical triangle      52 125
Triangle, Triangle Inequality      3
Trivial group      186
Twisted fuchsian group      288
Two-sided surface      344
Unbounded      62 81 103 161—162
union      356
Unknot      317
van der Veen, Roland      xvi
Vertex (pl. vertices) of a polygon      61 80 82 257
Vertex (pl. vertices) of a polyhedron      258
Vertex (pl. vertices), ideal vertex      116 170 170—180 257 258 257—265
Vertex (pl. vertices), vertex at infinity      170 170—180 257 258 257—265
Vogt, Elmar      347
Volume, finite volume      324
Volume, hyperbolic volume      240 353
Wada, Masaaki      246
Waldhausen, Friedhelm      347 350
Walk      see "Discrete walk"
Weeks, Jeffrey R.      323
Wright Sharp, Jennifer      xvi
Zieschang, Heiner (1936-2004)      347
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте