Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Block L.S., Coppel W.A. — Dynamics in One Dimension
Block L.S., Coppel W.A. — Dynamics in One Dimension



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Dynamics in One Dimension

Авторы: Block L.S., Coppel W.A.

Аннотация:

The behaviour under iteration of unimodal maps of an interval, such as the logistic map, has recently attracted considerable attention. It is not so widely known that a substantial theory has by now been built up for arbitrary continuous maps of an interval. The purpose of the book is to give a clear account of this subject, with complete proofs of many strong, general properties. In a number of cases these have previously been difficult of access. The analogous theory for maps of a circle is also surveyed. Although most of the results were unknown thirty years ago, the book will be intelligible to anyone who has mastered a first course in real analysis. Thus the book will be of use not only to students and researchers, but will also provide mathematicians generally with an understanding of how simple systems can exhibit chaotic behaviour.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 249

Добавлена в каталог: 08.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$\varepsilon$-chain      115
2-adic integer      133
Adding machine      133
Adjacency matrix      17
Almost periodic point      93
Alternating orbit      30
Approximately periodic point      136
Associated intervals      131
Asymptotically periodic point      71
Asymptotically stable set      99
Attractor      99
Bimonotonic sequence      52
Cantor set      34
Centre of a map      77
Chain of intervals      200
Chain recurrent point      112
Chaotic map      33 127
Characteristic polynomial      17
Complete negative trajectory      101
Conjugacy      18
Cover of a permutation, double      169 233
Cover of a permutation, k- tuple      169
Cover of a set      201
Cover of a set, open      189
D-point      28
Degree of a map of the circle      220
Degree, one lift      232
Directed graph (digraph)      7
Endomorphism      18
Entropy of a map relative to a cover      191
Entropy of an open cover      189
Eventually periodic point      70
f-covers      222
Factor of a map      18
Finite orbit      70
Fixed point      5
Forcing      167 168 232
Fundamental cycle      8
Homeomorphism      18
Homoclinic point      59
Homoclinic point in the sense of Poincare      153
Indecomposable closed invariant set      105
interval      5 196
Interval of decreasing type      76
Interval of increasing type      76
Intervals associated with a limit set      131
Invariant set      48
Irrational rotation      221
Irreducible non-negative matrix      197
Iterates of a map      5
Join of two covers      189
k-extension of a periodic orbit      169
Length of a chain of intervals      200
Lift of a map of the circle      220
Limit set      70
Linearization of a periodic orbit      169
Markov graph      22 223
Maximal eigenvalue      197
Minimal periodic orbit      187 224
Minimal set      91
Misiurewicz’s theorem      215
Monotonic map      202
Morse sequence      137
Non-wandering point      77
Norm of a matrix      197
Orbit      5
Period of a periodic lift      232
Period of a periodic point      6
Periodic interval      171
Periodic lift      232
Periodic point      6
Piecewise monotone map      44
Poisson stable point      77
Primary periodic lift      233
Primary periodic orbit      176
Primitive cycle      8
Pseudo-orbit      115
Rational rotation      221
Recurrent point      77
Reducible non-negative matrix      197
Refinement of a cover      189
Regularly recurrent point      93
Rotation      221
Rotation, interval      231
Rotation, number      230 232
Sarkovskii stratification      34
Sarkovskii’s theorem      6
Scrambled set      144
Semi-conjugacy      18
Separation of an interval      159
Shift operator      35
Simple periodic orbit      178 179
Stable set      99
Stefan, extension      233
Stefan, orbit      11
Strictly turbulent map      25 229
Strongly invariant set      48
Strongly non-chaotic map      126
Strongly recurrent point      93
Strongly simple periodic orbit      178
Subadditive sequence      190
Subcover      189
Symbolic dynamics      34
Topological entropy      191
Topologically conj ugate maps      18
Topologically mixing map      156
Topologically semi-conjugate maps      18
Trajectory      5 69
Transitive map      155
Turbulence stratification      34
Turbulent map      25
Turning-point      44
Twist lift      232
Type of a periodic orbit      19 167
U-point      28
Uniformly non-chaotic map      136
Unimodal map      80
Unstable manifold of a periodic point      47
Unstable manifolds, left and right      47
X-extension      233
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте