| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Molchanov I.I. — Limit theorems for unions of random closed sets |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | |  -addition      23 
  -closed set      20 
  -expectation of a random set      19 
  -convergence      2 Addition-scheme      15
 Alternating Choquet capacity      3
 Alternating Choquet capacity of in nite order      30
 Ambarzumian, R.V.      147
 Approximation of convex sets      38 139
 Araujo, A.      17 147
 Arrow, K.J.      17 147
 Artstein, Z.      15 16 85 147
 Asymptotic inverse function      13 56
 Attouch, H.      134 147
 Aubin, J.-P.      85 147
 Aumann, R.      15 147
 Baddeley, A.J.      103 112 147
 Balkema, A.A.      30 41 147
 Ball      1
 Berg, C.      30 147
 Bhattacharia, R.N.      26 147
 Billingsley, P.      10 147
 Boolean model      35
 Boolean model as U-stable set      36
 Boolean model, simulation      123
 Borel — Cantelli lemma      72
 Boundary of a set      2
 C-stable random set      see Convex-stable random set
 Canonically closed set      2
 Capacity functional      3
 Capacity integral      18
 Capacity, homogeneous      30 45 109
 Capacity, maxitive      see Maxitive capacity
 Capacity, regularly varying      69
 Castaign representation      102
 Cauchy distribution      60 119
 Central limit theorem for random sets      17
 Choquet capacity      3
 Choquet theorem      3
 Choquet, G.      6 36 147
 Christensen, J.P.R.      30 147
 Clarke, H.      85 147
 Closure of a set      2
 Compacti cation      5
 Complement      2
 Cone      59
 Cone, canonically closed      86
 Continuity set      7
 Convergence of capacities, pointwise      48 49
 Convergence of capacities, uniform      49
 Convergence of closed sets      1
 Convergence of compact sets      2
 Convex hull      2
 Convex random set      5
 Convex-stable random set      38
 Convex-stable random set of the first type      41
 Convex-stable random set of the second type      41
 Corrosion propagation      129
 Cressie, N.A.C.      1 17 147
 Davis, R.A.      38 67 68 71 74—76 79 82 127 148
 Density regularly varying      55
 Disease propagation      127
 Dudley, R.M.      27 148
 Ekeland, I.      85 147
 Engineering metric      102
 Envelope of a set      2
 Epi-convergence      140
 Epigraph      139
 Equilibrium measure      37
 Euclidean metric      1
 Euclidean norm      1
 Euclidean space      1
 Expectation of a random set      11 15
 Exponent of a regularly varying function      13
 Exponent of a regularly varying function, multivariate      14
 Feller, W.      13 148
 Fixed point      29
 Frankowska, H.      85 147
 Function, asymptotic inverse      13
 Function, multivalued      86
 Function, regularly varying      46
 Function, upper semi-continuous      134
 Functional, homogeneous      111
 Functional, strictly monotone      70
 Galambos, J.      30 38 41 45 49 50 53 148
 Gaussian random sample      130
 Gaussian random set      17
 Gerritse B.      18 148
 Gerritse, G.      65 148
 Gine, E.      15 17 18 30 38 40 41 147 148
 Groeneboom, P.      139 148
 Haan, L. de      13 14 30 77 95 148
 Hahn, F.H.      17 147
 Hahn, M.      15 17 18 38 148
 Hausdor metric      2
 Hengartner, W.      106 108 148
 Hiai, F.      15 85 148 149
 Hitting functional      3
 Homogeneous capacity      30 45 109
 Homogeneous function      14
 Homogeneous metric      102 110
 Huber, P.      18 149
 Hypo-convergence      134
 Hypograph      134
 Ideal metric      110
 Inclusion functional      6 38 51
 Index of a regularly varying function      13
 Index of a regularly varying function, multivalued      86
 Index of a regularly varying function, multivariate      14
 Intensity measure      35
 Interior of a set      2
 Inverse function      91
 Inversion of a set      34
 Ito, K.      149
 K-convergence      2
 Kalashnikov, V.V.      101 149
 Kendall, D.G.      1 3 149 151
 Kernel      36
 Khinchin lemma      43 44 65
 Kruse, R.      16 149
 Landkof, N.C.      36 37 111 149
 Laslett, G.M.      1 147
 Law of large numbers for Minkowski sums      16
 Law of large numbers for unions      71
 Leadbetter, M.R.      30 43 149
 Lebesgue measure      11 16
 Lebesgue measure on the sphere      58
 Levy metric for random sets      103
 Levy metric for random variables      107
 Levy — Prokhorov metric      101
 
 | Lindgren, G.      149 Lyashenko, N.N.      4 7 8 17 138 149
 Markov inequality      130
 Matheron, G.      1 3 12 18—20 22 29—31 35 37 57 67 69 73 108 111 123 132 149
 Max-stable distribution      30
 Max-stable random process      30
 Max-stable random variable      30
 Max-stable random vector      30 41
 Maximum principle      36
 Maxitive capacity      4 36
 McClure, D.E.      139 149
 McKean, H.P.      149
 Mecke, J.      1 151
 Minitive capacity      70
 Minkowski addition      2 12
 Minkowski functionals      108
 Minkowski subtraction      12
 Molchanov, I.S.      4 5 8 16 26 27 31 71 85 134 149 150
 Monotone capacity of infinite order      6
 Mulrow, E.      67 127 148
 Multivalued function      85
 Multivalued function, convex-valued      88
 Multivalued function, homogeneous      115
 Multivalued function, regularly varying      86
 Multivariate regularly varying function      14
 Newton capacity      111
 Norberg, T.      1 4 8 18 30 65 70 99 134 135 138 150
 Norm of a set      12 15
 Omey, E.      14 148
 Outer normal vector      139
 Pancheva, E.      65 150
 Papageorgiou, N.S.      85 150
 Poisson point process      35 57
 Poisson point process, stationary      35
 Polygonal approximation      139
 Polyhedron random      139
 Probability metric      101
 Probability metric, homogeneous      102 110
 Probability metric, ideal      110
 Probability metric, regular      110
 Probability metric, semi-homogeneous      118
 Probability metrics method      101
 Puri, M.L.      15 150
 Rachev, S.T.      101 103 149 150
 Ralescu, D.A.      15 150
 Random ball      84 85
 Random closed set      2
 Random closed set, additive U-stable      43
 Random closed set, compact      5
 Random closed set, convex      5
 Random closed set, convex-stable      38
 Random closed set, generalized U-stable      42
 Random closed set, homogeneous at infinity      43
 Random closed set, inverted U-stable      44
 Random closed set, isotropic      5
 Random closed set, non-trivial      29
 Random closed set, simulation      124
 Random closed set, stationary      5
 Random closed set, strictly C-stable      38
 Random closed set, U-stable      30
 Random closed set, union stable      30
 Random closed set, union-in nitely-divisible      29
 Random constraints      144
 Random half-space      142
 Random sample      67
 Random set, Gaussian      17
 Random set, p-stable      18
 Random triangle      125
 Random variable max-stable      30
 Random vector max-stable      30 41
 Ranga Rao, R.      26 147
 Regular metric      110
 Regularly varying function      13
 Regularly varying function at zero      49
 Regularly varying function index      13
 Resnick, S.I.      14 30 41 67 74 76 77 95 127 147 148 150
 Ressel, P.      30 147
 Riesz capacity      37
 Robbins formula      123 132
 Robbins, H.E.      123 150
 Rockafellar, R.T.      85 91 150
 Rootzen, H.      149
 Rose of directions      128
 Salinetti, G.      4 7 8 85 134 135 140 150 151
 Santalo, L.A.      131 151
 Schneider, R.      38 129 139 151
 Selector      22 102
 Semi-homogeneous metric      117
 Seneta, E.      13 46 56 69 89 151
 Serra, J.      12 123 151
 Set-valued function      85
 Shapley — Folkmann lemma      17
 Space of closed sets      1
 Stable random process      37
 Standard class      105
 Star-cluster      38 127
 Steiner formula      108
 Stoyan, D.      1 11 12 16 18 20 24 35 108 123 151
 Stoyan, H.      16 18 151
 Support function      7 12
 Theodorescu, R.      106 108 148
 Tomkins, R.      74 76 150
 Total variation distance      108
 Trader, D.A.      5 29 40 43 151
 Umegaki, H.      85 149
 Uniform for random variables      103
 Uniform metric for random sets      103
 union      11
 Union-scheme      45
 Union-stable random set      30 109
 Union-stable random set, simulation      124
 Unit sphere      9
 Upper limit in
  2 Upper limit in
  2 Upper semi-continuous function      5
 Upper semi-continuous functional      3
 Uryson, P.S.      131 151
 Variance of a random set      16
 Vatan, P.      38 148
 Vervaat, W.      1 150 151
 Vitale, R.A.      5 11 15—18 22 57 130 139 147 149 151
 Volume of random samples      129
 Wagner, D.      151
 Weak convergence of random sets      7 104
 Weak convergence, determine class      8
 Weak convergence, determining class      104
 Weil, W.      17 26 151
 Wets, R.J.-B.      4 7 8 85 91 134 135 140 147 151
 Yakimiv, A.L.      14 77 86 87 151
 Zinn, J.      148
 Zolotarev, V.M.      65 101—103 108 110 114 151 152
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |