|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: kinetic energy
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Wolf E.L. — Nanophysics and nanotechnology. An introduction to modern concepts in nanoscience | | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 56, 116, 119 | Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 201 | Apostol T.M. — Calculus (vol 2) | 329 | Keisler H.J. — Elementary calculus | 784 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 271.C 351.D | Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 19, 32 | Bird R.B., Lightfoot E.N., Stewart W.E. — Transport Phenomena | 334, 819 | Brauer F., Nohel J.A. — The qualitative theory of ordinary differential equations | 188, 194, 197 | Meirovitch L. — Methods of analytical dynamics | 14 | Olver P.J. — Equivalence, Invariants and Symmetry | 225 | Oprea J. — Differential Geometry and Its Applications | 255, 265, 284 | Wesseling P. — Principles of computational fluid dynamics | 19 | Palen S. — Schaum's Outline of Astronomy | 4 | Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 3, Fluid dynamics) | 121 | Weinstock R. — Calculus of variations with applications to physics & engineering | 73 | Smith M.S. — Principles and Applications of Tensor Analysis | 95 | Wiese J., Shems E. — Weird Science: 40 Strange-Acting, Bizarre-Looking, and Barely Believable Activities for Kids | 75 | Nayfeh A.H., Mook D.T. — Nonlinear Oscillations | 1, 42 | Drazin P. — Introduction to Hydrodynamic Stability | 43, 82, 83 | Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 356 | Lee G.H.W., Chu V.H. — Turbulent Jets and Plumes : A Lagrangian Approach | 52 | Miklowitz J. — The theory of elastic waves and waveguides | 48 | Chorin A., Marsden J. — A Mathematical Introduction to Fluid Mechanics | 12, 40, 49 | Ehlers J.F. — Mesa and Trading Market Cycles: Forecasting and Trading Strategies from the Creator of MESA | 12 | Debnath L. — Nonlinear water waves | 9—10, 20—21, 31, 38—39 | Jaswon M.A. — The Theory of Cohesion. An Outline of the Cohesive Properties of Electrons in Atoms, Molecules and Crystals | 16, 26 | Liddle A. — An Introduction to Modern Cosmology | 11 | Ryden B. — Introduction to Cosmology | 135 | Dill K.A., Bromberg S. — Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology | 39 | Levine I.N. — Molecular Spectroscopy | 3 | Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 334, 353 | Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 25, 43, 110 | Hand L.N., Finch J.D. — Analytical Mechanics | 127, 328 (prob) | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 416 | Bergman S., Schiffer M. — Kernel Functions and Elliptic Differential Equations in Mathematical Physics | see Energy | Lynch S. — Dynamical Systems with Applications Using Mathematica® | 112 | Machel A.N., Wang K. — Qualitative Theory of Dynamical Systems: The Role of Stability Preserving Mappings | 53 | Serre D. — Handbook of Mathematical Fluid Dynamics, Vol. 1 | 5, 10, 46 | Martinez A. — An Introduction to Semiclassical and Microlocal Analysis | 9 | Strauss W.A. — Partial Differential Equations: An Introduction | 38, 218 | Capriz G. (ed.), Giovine P. (ed.), Mariano P.M. (ed.) — Mathematical Models of Granular Matter | 168, 169, 172, 174, 179, 181, 187, 189 | Krupkova O. — The Geometry of Ordinary Variational Equations | 12, 122,126, 163,165 | Mayer J.E., Mayer M.G. — Statistical Mechanics | 1, 36—38 | Weatherburn C. — Advanced Vector Analysis | 40, 45, 52, 77, 102 | Raabe D. — Computational materials science | 57, 87, 98 f | Greiner W. — Quantum mechanics. An introduction | 85, 192 ff. | Thaller B. — Visual quantum mechanics | 88 | Eringen A.C. — Mechanics of continua | 88 | Greiner W. — Classical mechanics. Point particles and relativity | 433 | Friedlander S.J. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 3 | 541 | Planck M. — General mechanics, being volume I of Introduction to theoretical physics | 77, 205 | Shiffer M.M., Bowden L. — Role of Mathematics in Science | 170, 189,190 | Getzlaff M. — Fundamentals of Magnetism | 7, 225 | Chorin A.J. — Vorticity and turbulence | 8 | Eschrig H. — The Fundamentals of Density Functional Theory | 43, 47 | Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 3, 122 | Born M. — Natural philosophy of cause and chance (The Waynflete lectures) | 18, 50, 61, 80, 116, 117, 206 | Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 2, 16, 29 | Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.1) | 1—7, 4—2, 4—5 f, 39—4 | Lang S.A. — Undergraduate Analysis | 391 | Altmann S.L. — Band Theory of Solids: An Introduction from the Point of View of Symmetry | 9, 188 | Turnbull H.W. — An Introduction to the Theory of Canonical Matrices | 171 | Planck M. — Introduction to Theoretical Physics | 41 | Griffits D.J. — Introduction to quantum mechanics | 16—17 | Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 468 | Scott A. — Neuroscience: a mathematical primer | 30, 34 | Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 505, 507 | Elberly D.H., Shoemake K. — Game Physics | 14, 108 | Ito K. — Encyclopedic Dictionary of Mathematics | 271.C, 351.D | Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 1:370—371, 2:1343—1344, 2:1382, 2:1471, 2:1472, 2:1474, 2:1475 | Menzel D.H. — Mathematical Physics | 9 | Collins G.W. — Fundamentals of Stellar Astrophysics | 25 | Fundamentals of engineering. Supplied-reference handbook | 25, 27 | Perry J. — The Calculus for Engineers | 31 | Hale J.K., Kocak H. — Dynamics and Bifurcations | 414 | Lanzcos C. — The Variational Principles of Mechanics | 17, 21, 33, 94 | Langmuir I. — Phenomena, Atoms and Molecules | 46, 52, 310, 316 | Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 67 | Kuznetsov N., Mazya V., Vainberq B. — Linear Water Waves: A Mathematical Approach | 4, 68, 105, 116, 165, 167, 173, 177, 186, 196, 362, 363 | Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 43, 306p | Schercliff J.A. — Vector Fields | 19, 97, 293 | Fishbane P.M. — Physics For Scientists and Engineers with Modern Physics | 151, 752—759, 175, 183, 239, 1097—1098 | Featherstone R. — Rigid Body Dynamics Algorithms | 32, 35, 40, 46, 104, 105, 186 | Cleland A.N. — Foundations of nanomechanics | 6 | Karman T., Biot A.M. — Mathematical Methods in Engineering | 90 | Ting L., Klein R. — Viscous Vortical Flows (Lecture Notes in Physics) | 16, 32, 40 | Feodosiev V.I. — Advanced Stress and Stability Analysis | 367, 414 | Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 115, 320 | Forsythe W.E. — Smithsonian Physical Tables | 6 | Seitz F. — Modern Theory of Solids | 229 | Rickayzen G. — Green's functions and condensed matter | 344 | Unertl W.N. — Physical Structure | 151 | Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | I-1-7, I-4-2, I-4-5 f, I-39-4 | O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 159 | Ardema M.D. — Newton-Euler Dynamics | 267, 274 | Cowling T.G. — Molecules in motion | 18, 21, 29 | Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 212, 247 | Mercier A. — Analytical and canonical formalism in physics | 15, 16, 18, 22, 23, 27, 28, 39, 40, 41, 50, 68, 201 | Kleppner D., Kolenkow R. — An introduction to mechanics | 156 | Sternberg Sh. — Lectures on Differential Geometry | 149 | Kulish V.V. — Hierarchical Methods: Hierarchy and Hierarchical Asymptotic Methods In Electrodynamics, Volume 1 | 19, 31, 32, 115, 198—200, 203 | Englert B.G. (Ed) — Quantum Mechanics | 320 | Achenbach J.D. — Wave propagation in elastic solids | 17, 24, 60 | Meyerhof W.E. — Elements of Nuclear Physics | see also “Energy” | Freund L.B. — Dynamic Fracture Mechanics | 8, 18, 225 | Cowan B. — Topics In Statistical Mechanics | 5 | Love A.E. — Theoretical Mechanics, an Introductory Treatise on the Principles of Dynamics: With Applications and Numerous Examples | 65, 146, 211 | Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 318, 334 | Cercignani C. — Theory and Application of the Boltzman Equation | see “Energy, kinetic” | Wolf E.L. — Nanophysics and nanotechnology: an introduction to modern concepts in nanoscience | 21, 48 | Mason G.W., Griffen D.T., Merrill J. — Physical Science Concepts | 57, 64 | Pipes L.A. — Applied Mathemattics for Engineers and Physicists | 177, 185 | Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 4, 23, 67, 205, 229 | Kuttler K. — Calculus, Applications and Theory | 358 | Ardema M.D. — Analytical Dynamics: Theory and Applications | 13, 83, 109 | Streetman B.G. — Solid State Electronic Devices | 34, 38 | Carrol B.W., Ostlie D.A. — An introduction to modern astrophysics | 39, 42 | ter Haar D. — Elements of Statistical Mechanics | 3, 37, 149, 160, 268 | Strelkov S.P. — Mechanics | 116, 136 | Israelachvili J.N. — Intermolecular and surface forces | 24—27 | Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua | 203 | Daniel C. Mattis — The theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods | 21, 29, 65, 66, 104, 127, 151, 152, 159, 278, 311, 322, 335, 436, 437 | Fogiel M. — The optics problem solver | 3—9, 3—10 | Dewdney A.K. — Beyond reason. 8 great problems that reveal the limits of science | 5, 31, 45, 55—56 | Greiner W., Mueller B. — Quantum mechanics: symmetries | 11 | Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 45 | Tolman R.C. — Relativity, thermodynamics, and cosmology | 47 | Kundt W. — Astrophysics. A Primer | 38 | Bluman G.W. — Problem Book for First Year Calculus | 100, 140, [III.49] | Houston W.V. — Principles of Mathematical Physics | 18 | Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 22, 30 | Oprea J. — Differential Geometry and Its Applications | 312, 323, 326, 351, 352, 358, 362, 412 | Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (2)33, 35 | Cotterill R.M.J. — Biophysics: An Introduction | 45 | Murrel J.N., Bosanac S.D. — Introduction to the Theory of Atomic and Molecular Collisions | 19, 110 | Slater J.C., Frank N.H. — Mechanics | 9—16, 71—75, 126 | Curle N., Davies H. — Modern Fluid Dynamics. Volume 1. Incompressible flow | 97, 262 | Mangiarotti L., Sardanashvily G. — Connections in Classical and Quantum Field Theory | 122 | Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 283 | Arya A.P. — Introduction to Classical Mechanics | 510 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 280, 299 | Kimball A.I. — A college textbook of physics | 41, 66 | Thorpe M.F. (ed.), Duxbury P.M. (ed.) — Rigidity theory and applications | 98 | Simmons G.F. — Differential Equations with Applications and Historical Notes | 20, 105, 320, 378 | Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 268 | Zakrzewski W.J. — Low Dimensional Sigma Models | 226 | Stavroulakis I.P., Tersian S.A. — Partial Differential Equations: An Introduction with Mathematica and Maple | 92 | Toro E.F. — Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction | 3 | Pattabhi V., Gautham N. — Biophysics | 1 | Lanczos C. — Variational principles of mechanics | 17, 21, 33, 94 | Hermann R. — Differential geometry and the calculus of variations | 99, 100, 102, 156, 186 | Gallavotti G. — Statistical Mechanics | 5, 59 | Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 242 | Selig J.M. — Introductory robotics | 115, 146—147 | Knight J. — Science of everyday things (volume 4). Real-life earth science | 1:11—12, 4:23—24, see also "Energy" | Schechter M. — Operator methods in quantum mechanics | 7 | Fox W.P., Goirdano F.R., Weir M.D. — First Course in Mathematical Modeling | 70 | Asay J.R., Shahinpoor M. — High-pressure shock compression of solids | 283 | Mayer J.E., Goeppert Mayer M. — Statistical mechanics | 1, 36—38 | Hildebrand F.B. — Methods of Applied Mathematics | 149, 150, 166 | Woods F. S, Bailey F.H. — A course in mathematics. Volume I | 203 | Demidovich B. (ed.) — Problems in mathematical analysis | 174 | Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 375, 420 | Woods F.S., Bailey F.H. — A Course in Mathematics. Volume II | I, 203 | Bethe H.A. — Elementary nuclear theory | 5 | Ugarov V.A. — Special Theory of Relativity | 141 | Chaikin P., Lubensky T. — Principles of condensed matter physics | 3, 122 | Lang S. — Undergraduate analysis | 391 | Greiner W., Reinhardt J. — Field quantization | 16 | Richards P.I. — Manual of Mathematical Physics | 4 | Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 305, 306, 310 | Wiedemann H. — Particle accelerator physics II | 188 | de Leon M., Rodrigues P.R. — Methods of differential geometry in analytical mechanics | 329 | Loomis L.H., Sternberg S. — Advanced calculus | 521 | Lane S.M. — Mathematics, form and function | 265 | Tenenbaum M., Pollard H. — Ordinary differential equations: an elementary textbook for students of mathematics, engineering, and the sciences | 329, 475 | Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 18, 288 | Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 10 | David A. Mooney — Introduction to Thermodynamics and Heat Transfer | 50, 69, 72, 83, 273, 277, 292 | Collins G.W. — The virial theorem in stellar astrophysics | 1, 9, 12, 25, 33, 55, 72 | Griffits D.J. — Introductions to electrodynamics | 510 | 0 — Holt Physics | 860, 869 | Guyon E., Hulin J., Petit L. — Physical Hydrodynamics | see also "Conservation of ..." | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 416 | Schutz B.F. — A first course in general relativity | 190 | Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 321, 336 | Oertel H. — Prandtl's Essentials of Fluid Mechanics (Applied Mathematical Sciences) | 195 | Anderson J.L. — Principles of Relativity Physics | 195 | Hademenos G.J. — Applied physics | 31 | Ashby N., Miller S.C. — Principles of modern physics | 87 | Synge J.L. — Relativity: The Special Theory | 169 | Anderson D.F., Eberhardt S. — Understanding flight | 9, 36, 44, 122, 198 | Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 329 | Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 73 | Lemm J.C. — Bayesian field theory | 261, 288, 300, 351 | Langhaar H.R. — Energy Methods in Applied Mechanics | 10, 11 | Langhaar H.R. — Energy Methods in Applied Mechanics | 10, 11 | Librescu L., Song O. — Thin-Walled Composite Beams:Theory and Application | 54 | Librescu L., Song O. — Thin-Walled Composite Beams:Theory and Application | 54 | Rao S.S. — Mechanical Vibrations | 276 | Minlos R.A. — Introduction to Mathematical Statistical Physics | 3, 9 | Lee A. — Mathematics Applied to Continuum Mechanics | 89, 176, 487 | Binder K., Heermann D.W. — Monte Carlo Simulation in Statistical Physics | 138, 157 | Whittaker E.T., McCrae W. — Treatise on analytical dynamics of particles and rigid bodies | 35 | Prikarpatsky A.K., Taneri U., Bogolubov N.N. — Quantum field theory with application to quantum nonlinear optics | 27 | Johnson W.C. — Mathematical and physical principles of engineering analysis | 11 | ter Haar D. — Elements of Statistical Mechanics | 3, 37, 149, 160, 268 | Slater J., Frank N. — Introduction to Theoretical Physics | 41 | Shu-Ang Zhou — Electrodynamics of solids and microwave superconductivity | 249 | Cercignani C. — Rarefied Gas Dynamics | 2, 10, 36, 209, 305 | Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | I-1-7, I-4-2, I-4-5 f, I-39-4 | Greiner W., Maruhn J. — Nuclear models | 122—124, 317, 318, 337, 352, 355 | Davies P. — The New Physics | 228—230, 415 | Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 66 | Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 208, 209 | Wiedemann H. — Particle Accelerator Physics I: Basic Principles and Linear Beam Dynamics | 18 | Park R., Lagally M. — Methods of Experimental Physics.Volume 22.Solid State Physics:Surfaces. | 467, 482 | Springford M. — Electrons at Fermi surface | 47, 53, 54, 157—187 | Blin-Stoyle R.J. — Eureka! Physics of particles, matter and the universe | 20, 23 | Synge J. L. — Tensor Calculus | 151, 168 | Grosse H., Martin A. — Particle Physics and the Schroedinger Equation | 8, 27, 49, 59, 67, 68, 70, 72—77, 89, 111, 121, 124, 127, 141, 142, 155 | Conger D. — Physics modelling for game programming | 185, 453 | Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (2)33, 35 | Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 4, 23, 67, 205, 229 | Mac Lane S. — Mathematics: Form and Function | 265 | Melissinos A.C. — Principles of modern technology | 282 | Buckmaster J. — The Mathematics of combustion | 9, 133 | Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics | 76, 85, 120—124, 137—167, 283—284 | Schiffer M.M. — The role of mathematics in science | 170, 189, 190 | Brandt S., Dahmen H.D. — Quantum mechanics on the personal computer | 5 |
|
|