|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Plato
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Gardner M. — Wheels, life, and other mathematical amusements | 106, 114 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 187 357.B | Hardy G.H., Wright E.M. — An Introduction to the Theory of Numbers | 42, 43 | Dodge C.W. — Sets, logic & numbers | 84 | Hamilton W.R. — The collected mathematical papers. Volume 3: algebra | 609 | Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability | 11—17, 44, 140—141, 182n | McCall R.J. — Basic logic | 18 | Peek R.P. (ed.), Newby G.B. (ed.) — Scholarly publishing: the electronic frontier | 25 | Winograd T. — Understanding computers and cognition | 14, 30 | Harris R. — Crafting the New Conversational Speech Systems | 225 | Armstrong I. — Victorian Poetry: Poetry, Poets and Politics | 78, 143, 144 | Witten I.H., Gori M., Numerico T. — Web Dragons: Inside the Myths of Search Engine Technology | 5, 6, 23 | Talbott W.J. — Which Rights Should Be Universal? | 17, 24, 41, 115—118, 122—123, 127, 134, 184, 186, 194 n. 5, 201 nn. 4 and 6 | Lessig L. — Code: Version 2.0 | 59—60 | Griffiths H. — Surfaces | 7 | Harmuth H.F. — Sequency theory: foundations and applications | 1 | Peters E.E. — Fractal Market Analysis: Applying Chaos Theory to Investment and Economics | 3, 19 | Dodge C.W. — Foundations of algebra and analysis | 84 | Skorokhod A.V., Prokhorov Y.V. (Ed) — Basic Principles and Applications of Probability Theory | 13 | Mindich D.T. — Tuned out: Why Americans under 40 Don't Follow the News | 5 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra | 4 | Levi I. — The enterprise of knowledge | 171 | Von Laue M. — History of Physics | 1 | Ewald W. — From Kant to Hilbert, Vol.2 | 1, 44, 57, 153, 293, 455, 518, 537, 543, 558, 639, 916, 918, 1266 | Link G. (Ed) — One Hundred Years of Russell's Paradox: Mathematics, Logic, Philosophy | 484 | Rich B., Schmidt Ph. — Schaum's Outline of Elementary Algebra (Schaum's Outline Series) | 105 | Kline M. — Mathematics in Western Culture | 6, 24, 29, 31—33, 47, 50, 54, 61, 74, 78—80, 84, 91, 95, 114, 142, 178, 184, 213 | Ewald W. — From Kant to Hilbert, Vol.1 | 1, 44, 57, 153, 293, 455, 518, 537, 543, 558, 639 | Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 25, 185 | Seltman M. (ed.), Goulding R. (ed.) — Thomas Harriot's Artis Analyticae PRAXIS: An English Translation with Commentary | 211 | Gabbay D.M. (Ed), Woods J. (Ed) — Logic and the Modalities in the Twentieth Century, Vol. 7 | 237 | Cuomo S. — Ancient Mathematics | 5, 9, 24—31, 33—35, 41—47, 49—53, 55—58, 76—77, 85, 89, 93, 127, 130, 138—139, 143—145, 160, 180—181, 186, 192—193, 195, 197, 199, 233—237, 241, 243, 250—251, 254—255, 257, 259—260 | Kappraff J. — Beyond Measure: A Guided Tour through Nature, Myth, and Number | 54, 80—82, 111, 189 | Aczel A.D. — Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe | 66—67, 91, 183, 217, 218 | Brown J.R. — Philosophy of Mathematics: An Introduction to a World of Proofs and Pictures | xi, 8, 193; | Ìýéåðñ Ñ. — Ýôôåêòèâíîå èñïîëüçîâàíèå C++. 55 âåðíûõ ñîâåòîâ óëó÷øèòü ñòðóêòóðó è êîä âàøèõ ïðîãðàìì | 95 | Gleick J. — Chaos. Making a new science | 195,202 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 26, 38, 42—47, 47—48, 150—151, 154, 395, 1026 | Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 13, 63 | Turnbull H.W. — The Great Mathematicians | 2, 7, 16, 21, 22, 23, 25, 32, 83 | Bashmakova I.G. — Diophantus and Diophantine Equations | 47 | Nasar S. — A Beautiful Mind | 94 | Sleeman D., Brown J.S. — Intelligent tutoring systems | 85, 329 | Boas R.P. — A Primer of Real Functions | 156 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 26, 38, 42—47, 47—48, 150—151, 154, 395, 1026 | Coxeter H.S.M. — Introduction to Geometry | 152, 191 | Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 2:933, 2:1004, 2:1121, 2:1422 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 11, 67, 71, 192, 198, 204, 378 | Zajac A. — Optics | 1 | Gray J. — Mastering Mathematica | 119 | Carlson L. — Dialogue Games. An Approach to Discourse Analysis | 14, 70 | Fowler D.H. — Mathematics of Plato's Academy: A New Reconstruction | passim | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 26, 38, 42—47, 47—48, 150—151, 154, 395, 1026 | De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 1 | Kneale M. — Development of Logic | 1, 6—22, 32, 39, 45, 308 | von zur Gathen J., Gerhard J. — Modern computer algebra | 22, 294, 691 | Truesdell C. — Essays in the History of Mechanics | 32, 42 | Rowan-Robinson M. — Nine Numbers of the Cosmos | 4 | Angrist S.W., Hepler L.G. — Laws of Order and Chaos | 58 | Luger G.F., Stubblefield W.A. — Artificial Intelligence: Structures and Strategies for Complex Problem Solving | 13 | Dickson L.E. — History of the Theory of Numbers, Volume I: Divisibility and Primality | 51 | Brookshear J.G. — Computer Science: An Overview | 30 | De Finetti B. — Theory of probability (Vol. 1) | 22 | Kasner E., Newman J. — Mathematics and the Imagination | 134 | Adair R.K. — The Great Design: Particles, Fields, and Creation | 103 | Zimmer E. — Revolution in Physics | 68, 117, 209 | Coxeter H.S.M. — Regular Polytopes | 13, 30 | Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 3, 5 | Rockmore D. — Stalking the Riemann Hypothesis | 13, 63 | Berger M., Cole M. (translator) — Geometry I (Universitext) | 12.5.5.7 | Ìýéåðñ Ñ. — Ýôôåêòèâíîå èñïîëüçîâàíèå C++ 55 âåðíûõ ñïîñîáîâ óëó÷øèòü ñòðóêòóðó è êîä âàøèõ ïðîãðàìì | 95 | Whittaker E. — A history of the theories of aether and electricity (Vol1. The classical theories) | 1, 6 | Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 1 | 1, 2, 3, 137, 155—156, 159, 184, 187, 203, 221 | Dickson L.E. — History of the Theory of Numbers, Volume ll: Diophantine Analysis | 165 (167, 171, 177, 385) | Dugas R. — A History of Mechanics | 87 | Barrow J.D., Tipler F.J. — Anthropic Cosmological Principle | 35—36 | Fenn R. — Geometry | 63 | Kempthorne O. — Design and Analysis of Experiments, Introduction to Experimental Design, Vol. 1 | 12 — 13 | Mason G.W., Griffen D.T., Merrill J. — Physical Science Concepts | 3, 87, 251 | Weyl H. — Symmetry | 8, 28, 73 | Jaeger F.M. — Lectures on the principle of symmetry and its applications in all natural sciences | 1, 7 | Carrol B.W., Ostlie D.A. — An introduction to modern astrophysics | 2, 4 | Hoffman B. — Strange Story of the Quantum | 4 | Mcmullen P., Schulte E. — Abstract Regular Polytopes | 2 | Poincare H. — Mathematics and Science: Last Essays | 73 | Dewdney A.K. — Beyond reason. 8 great problems that reveal the limits of science | 36 | Weyl H. — Philosophy of mathematics and natural science | 11, 43, 63, 91, 110, 130, 132, 150, 178, 179, 227, 285, 286 | Galileo G. — Dialogues concerning two new sciens | 90, 137, 261 | Hellman H. — Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever | 203, 205 | Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 2, 181—182, 186, 196, 208 | Hardy G.H., Wright E.M. — Introduction to theory of numbers | 42, 43 | Struik D.J. — A concise history of mathematics. Volume 2 | 52, 53, 55, 61, 65, 71, 77, 106, 115, 132, 211, 241 | Shapiro S. — Thinking about Mathematics: The Philosophy of Mathematics | 3, 5, 6, 7, 8, 50, 63, 66, 69, 74, 88, 179, 205, 262 | Hardy G.H., Wright E.M. — An Introduction to the Theory of Numbers | 42, 43 | Schubert H. — Mathematical essays and recreations | 39, 98 | Browder A. — Mathematical Analysis: An Introduction | 26 | Dugas R. — A history of mechanics | 87 | Logsdon M.I. — A Mathematician Explains | 60, 61 | Gauquelin M. — The cosmic clocks | 47 | Heisenberg W.K. — Nuclear Physics | 4 | Heisenberg W. — Nuclear physics | 4 | Gallavotti G. — Statistical Mechanics | 39 | Kneale W. — Probability and Induction | 31, 47, 49 | Substance and Fiction and Einstein's Theory of Relativity | 131ff., 134f., 312, 327, 368, 370, 455 | Andrews W.S. — Magic Squares and Cubes | 148ff, 159 | Heisenberg W. — The Physicist's Conception of Nature | 59f, 79, 83 | Beth E.W. — The foundations of mathematics: A study in the philosophy of science | 5, 7, 11ff., 20, 22f., 25, 31, 35ff., 40, 54, 90, 196, 223, 354, 493, 629, 632, 637, 644 | Coxeter H. — Regular polytopes | 13, 30 | Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 9, 294 | Gallavotti G. — Foundations of fluid mechanics | 440 | Copi I.M., Cohen C. — Introduction to logic | 12, 76, 78, 91, 104, 110, 113, 125, 137, 153, 155, 157, 161, 230, 233, 250, 252 | Borovik A.V. — Mathematics under the microscope | 128 | Rucker R. — Mind Tools. The Five Levels of Mathematical Reality | 19, 20, 156, 200—201, 290 | Dunford N., Schwartz J.T. — Linear operators. Part III. Spectral operators | 2056, 2060 | De Finetti B. — Theory of Probability. A critical introductory treatment | 22 | Fink K. — A brief history of mathematics | 67, 82, 197, 207 | Heath Th.L. — Diophantus of Alexandria. A Study in the History of Greek Algebra | 4, 38 n., 111, 113, 116, 125 | Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 3 | I. 1, 2, 3, 137, 155—156, 159, 184, 187, 203, 221, III. 1, 3 | Carmichael R.D. — Diophantine Analysis | 9 | Kasner E., Newman J. — Mathematics and the imagination | 134 | Ore O. — Number theory and its history | 26, 166 | Carus P. — The Foundations of Mathematics. A Contribution to the Philosophy of Geometry | 135 | Van Orman Quine W. — Methods of Logic | 119, 208 | Brookshear J. — Computer Science | 30 | Katz V.J. — A History of Mathematics: An Introduction | 52—54, 135 | Cohen M.R., Nagel E. — An Introduction to Logic and Scientific Method | 52, 227, 459 | Heath T. — A History of Greek Mathematics, Vol. 2 | 19, 22, 24, 121, 142n., 170, 176 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2 | 1, 44, 57, 153, 293, 455, 518, 537, 543, 558, 639, 916, 918, 1266 | Moore F. — Elements of Computer Music | 1, 2 | Mure G. R. G. — A study of Hegel's logic | 33, 37, 54, 85 | Bell E.T. — Men of mathematics. Volume 2 | 3, 16, 20, 21, 26, 27, 33, 263 | Klein F. — Elementary Mathematics From an Advanced Standpoint: Arithmetic, Algebra, Analysis | 80, 120 | Fritjof Capra — The Tao of physics | 162, 257 | Ore O. — Invitation to Number Theory | 2 | Ifrah G., Bellos D. — The Universal History of Numbers: From Prehistory to the Invention of the Computer | 512—513, 517, 523, 598 | Rice J.A. — Mathematical statistics and data analysis | 296 | Kline M. — Mathematics for the Nonmathematician | 2, 17, 30, 32 ff., 48, 50, 125, 199 f., 228, 476, 543 | Stillwell J. — Mathematics and its history | 3 | Eves H.W. — Mathematical circles revisited | 21 | Davis P., Hersh R. — The Mathematical Experience | 128, 325 | Bell E.T. — Mathematics: Queen and Servant of Science | xvii, 47, 140, 269, 276, 389 | Davies P. — The New Physics | 61 | Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 11, 14, 58, 197 | Coutinho S. — The mathematics of ciphers: number theory and RSA cryptography | 7, 43 | Tipler F.J. — The Physics of Immortality | 75—76, 158, 215, 290—291 | Posamentier A.S. — The Fabulous Fibonacci Numbers | 153 | Krantz S. — Mathematical apocrypha redux | 99 | Senechal M. — Crystalline Symmetries, An informal mathematical introduction | 3, 6, 88, 124 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1 | 1, 44, 57, 153, 293, 455, 518, 537, 543, 558, 639 | Mach E. — The Principles of Physical Optics: An Historical and Philosophical Treatment | 8 | Hargittai M., Hargittai I. — Candid Science IV: Conversations With Famous Physicists | 66, 430 | Colyvan M. — The Indispensability of Mathematics | 32 | Russel B. — Principles of Mathematics | 73, 355, 357, 438, 446 | Krantz S. — Mathematical Apocrypha Redux: More Stories and Anecdotes of Mathematicians and the Mathematical (Spectrum) (Spectrum) | 99 | Jammer M. — Concepts of space: The history of theories of space in physics | 14—16, 38, 148, 218 | Kline M. — Mathematical thought from ancient to modern times | 26, 38, 42—47, 48, 150, 151, 154, 395, 1026 | Brezinski C. — History of Continued Fractions and Padé Approximants | 13, 15, 320 | Ruelle D. — The mathematician's brain: A personal tour through the essentials of mathematics | 7, 20, 44, 67, 130, 131n2(ch2) | Eves H. — Mathematical Circles Revisited: A Second Collection of Mathematical Stories and Anecdotes | 21 | Eves H. — Mathematical Circles Adieu | 91, 196 | Popper K.R. — Quantum theory and the schism in physics | 162—163, 166, 205—206 | Truss J.K. — Foundations of Mathematical Analysis | 111 | Wells D. G. — You are a mathematician: a wise and witty introduction to the joy of numbers | 83 | Truss J. — Foundations of mathematical analysis | 111 | J. K. Truss — Foundations of mathematical analysis MCet | 111 | Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 5, 34, 90, 92 |
|
|