Авторизация
Поиск по указателям
Seltman M. (ed.), Goulding R. (ed.) — Thomas Harriot's Artis Analyticae PRAXIS: An English Translation with Commentary
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Thomas Harriot's Artis Analyticae PRAXIS: An English Translation with Commentary
Авторы: Seltman M. (ed.), Goulding R. (ed.)
Аннотация: The present work is the first ever English translation of the original text of Thomas Harriot's Artis Analyticae Praxis, first published in 1631 in Latin. Thomas Harriot's Praxis is an essential work in the history of algebra. Even though Harriot's contemporary, Viete, was among the first to use literal symbols to stand for known and unknown quantities, it was Harriot who took the crucial step of creating an entirely symbolic algebra. This allowed reasoning to be reduced to a quasi-mechanical manipulation of symbols. Although Harriot's algebra was still limited in scope (he insisted, for example, on strict homogeneity, so only terms of the same powers could be added or equated to one another), it is recognizably modern. While Harriot's book was highly influential in the development of analysis in England before Newton, it has recently become clear that the posthumously published Praxis contains only an incomplete account of Harriot's achievement: his editor substantially rearranged the work before publishing it, and omitted sections that were apparently beyond comprehension, such as negative and complex roots of equations. The commentary included with this translation relates the contents of the Praxis to the corresponding pages in his manuscript papers, which enables much of Harriot's most novel and advanced mathematics to be explored. This publication will become an important contribution to the history of mathematics, and it will provide the basis for a reassessment of the development of algebra.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2007
Количество страниц: 299
Добавлена в каталог: 13.05.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Acephalic square 258
Adventitious equation 244
Affected power 262
Algebra, algebraic logic 6
Algebra, completely symbolic notation 9
Algebra, Harriot’s role 1
Algebra, purely symbolic notation 1
Algebra, Renaissance to the modern world 15
Algebra, zero, introduction of 6
Algorithmic methods 15
Analytical geometry 211
Antithesis 215
Apollonius 212
Application 215—216
Archimedes 212
Artis Analyticae Praxis, achievements 11—14
Artis Analyticae Praxis, analysis exclusively algebraic 10—11
Artis Analyticae Praxis, Canonical equations generated from binomial roots 11 12
Artis Analyticae Praxis, clear symbolism 13
Artis Analyticae Praxis, comparisons with MS and Torporley’s copy 214
Artis Analyticae Praxis, contents compared with Harriot manuscript pages 287—291
Artis Analyticae Praxis, contents overview 11—14
Artis Analyticae Praxis, Definitions - author 10
Artis Analyticae Praxis, Definitions - purpose of providing 12
Artis Analyticae Praxis, equations solved, comparative table 263—269
Artis Analyticae Praxis, errata v 271—278
Artis Analyticae Praxis, exponential notation lacking 15
Artis Analyticae Praxis, first published v
Artis Analyticae Praxis, first published algebraic work to be purely symbolic 15
Artis Analyticae Praxis, focus on the structure of equations 15
Artis Analyticae Praxis, generalization through lists of examples 215
Artis Analyticae Praxis, Harriot’s intentions v
Artis Analyticae Praxis, Lemmas in section five 233—238
Artis Analyticae Praxis, model polynomials 253
Artis Analyticae Praxis, numerical exegesis 254—255
Artis Analyticae Praxis, numerical solution of equations by successive approximation 13
Artis Analyticae Praxis, ordering of sections 13
Artis Analyticae Praxis, polynomial equations with numerical coefficients 11
Artis Analyticae Praxis, Preface 10
Artis Analyticae Praxis, purely symbolic notation 1
Artis Analyticae Praxis, Rules for Guidance 13
Artis Analyticae Praxis, section contents summarised 29
Artis Analyticae Praxis, significance 14—16
Artis Analyticae Praxis, structure of book 13
Artis Analyticae Praxis, superior notation demonstrated 258 259
Artis Analyticae Praxis, text and surviving Harriot manuscripts 4
Artis Analyticae Praxis, Torporley, Nathaniel 4
Artis Analyticae Praxis, Warner, Walter as editor 4
Artis Analyticae Praxis, Warner, Walter changes 286—287
avulsed powers 259 261
Backward composition 256 257 260
Bibliography 293—294
Biquadratic equations, general method to find roots 13—14
Biquadratic equations, reduction 247
Biquadratic equations, removing the term of second highest degree 239
Biquadratic equations, table of derivation from ‘originals’ 221—222
Bombelli, Raffaelo 7
Canonical equations, background by Warner 22
Canonical equations, definitions 5n2 217
Canonical equations, generated by binomial factors 11 243
Canonical equations, primary reduced to secondary 223
Canonical equations, roots of Primary and Secondary 219
Canonical equations, secondary 254
Canonical equations, treatment 217
Canonical forms, pattern of formation 228
Canonical polynomial, definition 5 note 2
Cardano, Girolamo 6 20 234 242
Cavendish, Charles 4
Chuquet, Nicolas 7
Clavious, Christopher 13
Comma used as bracket 214
Common equations 223
Complex roots of equations 219—221 235
Conceiving and imagining 9
Conjugate complex numbers 6 246—247
Conjugate equations, pairs of 247 248
Copernicanism 2
Corrective device 258—259
Cossic notation 13 15 213
Cossic numbers 6
Cubic equations, derivation from ‘originals’ 222
Cubic equations, fully solved 239 242
Cubic equations, general method to find roots 13—14
Cubic equations, negative coefficients 240
Cubic equations, pure cube 260
Cubic equations, reciprocal 222
Cubic equations, removing the term of second highest degree 14 239
Cubic equations, symbolic solution 245
De Radicalibus 215 287
Dee, John 2
Definitions in Artis Analyticae Praxis, analysis 24 211—212
Definitions in Artis Analyticae Praxis, canonical equations 28—29
Definitions in Artis Analyticae Praxis, common or adventitious equation 27
Definitions in Artis Analyticae Praxis, composition, resolution 24
Definitions in Artis Analyticae Praxis, equation 23
Definitions in Artis Analyticae Praxis, Exegetic [analysis] 25 212
Definitions in Artis Analyticae Praxis, numerical Exegesis 26
Definitions in Artis Analyticae Praxis, originals of canonical equations 27
Definitions in Artis Analyticae Praxis, Poristic [analysis] 25 212
Definitions in Artis Analyticae Praxis, primary canonical equations 27—28
Definitions in Artis Analyticae Praxis, reciprocal equation 29
Definitions in Artis Analyticae Praxis, root, value 26—27
Definitions in Artis Analyticae Praxis, secondary canonical equations 28
Definitions in Artis Analyticae Praxis, secondary Exegesis 26
Definitions in Artis Analyticae Praxis, specious Exegesis 25—26
Definitions in Artis Analyticae Praxis, specious logistic 23 209—211
Definitions in Artis Analyticae Praxis, synthesis 23—24 211
Definitions in Artis Analyticae Praxis, Zetetic [analysis] 24—25 212
Degree of an equation, equality with number of roots 15 219
Descartes, Rene, algebraic geometry 10
Descartes, Rene, geometrism 15—16
Descartes, Rene, La Geometrie 2 7 9
Descartes, Rene, Pappus’ locus problem 210
Descartes, Rene, Rule of Signs 15 235 236
Descartes, Rene, unity 9—10
Digges, Leonard 2
Digges, Thomas 2
Diophantus 6—7 8 20
Discriminant of the cubic 235
Dividing through an equation by known quantity 216
Dividing through an equation by the unknown 216
Epanorthosis 261
Equations with numerical coefficients 254
Equipollence 233 235 236 287
Exegesis [use of word] 253
Explicated root of equation 229
Fractions reduced to lowest terms 214
Girard Albert 7
Grenville, Sir Richard 3
Hakluyt, Richard 2
Halley, Edmund 14 237
Harriot, Thomas - papers, Add. MS, 6782 contents list 279—271
Harriot, Thomas - papers, Add. MS, 6783 contents list 281—282
Harriot, Thomas - papers, Add. MS, 6784 contents list 282
Harriot, Thomas - papers, comments on numbering 286—287
Harriot, Thomas - papers, contents and comparison with Torporley 283—285
Harriot, Thomas - papers, contents and numbering 285—286
Harriot, Thomas - papers, disposal after death 3—4 3
Harriot, Thomas - papers, Torporley access 11
Harriot, Thomas - papers, ‘waste’ 3
Harriot, Thomas, accomplishments 2
Harriot, Thomas, accomplishments set out by D.T. Whiteside 2
Harriot, Thomas, algebra transformed 1
Harriot, Thomas, analytical geometry 211
Harriot, Thomas, background 2
Harriot, Thomas, background by Warner 19—20 22
Harriot, Thomas, career 3
Harriot, Thomas, comparison with Viete 8—11
Harriot, Thomas, completely symbolic notation 9
Harriot, Thomas, conceptual connection with Viete 10
Harriot, Thomas, equating all the terms of an equation to zero 13
Harriot, Thomas, equations with numerical coefficients 254
Harriot, Thomas, exegesis [use of word] 253
Harriot, Thomas, exponential notation 15
Harriot, Thomas, facility in symbolic thinking 224
Harriot, Thomas, influence on later English mathematicians 4
Harriot, Thomas, manuscript papers 254
Harriot, Thomas, notation revolutionary 1
Harriot, Thomas, polynomial equations generated by product of binomial factors 1
Harriot, Thomas, polynomial equations with terms equated to zero 1
Harriot, Thomas, purely symbolic notation 1 15
Harriot, Thomas, reputation 1
Harriot, Thomas, superior notation demonstrated 258 259
Harriot, Thomas, telescopes 2
Harriot, Thomas, two chief discoveries 5
Harriot, Thomas, use of Vie`te’s examples 253
Harriot, Thomas, Will 3
Headless quadratic method 258
Homogeneity, laws of 260
Homogeneity, problems of 9
Homogeneous term 13 217 247 248
Homogenous form of equations 213
Hues, Robert 3
Hypobibasm 215 216
Imaginary roots of equations 12 219—220 249
Imagining and conceiving 9
Kepler, J. 2
Lagrange, J.L. 6 14 235
Lower, William 6
Macraelius 217
Magnitudes, algebra of 9
Magnitudes, Descartes 10
Magnitudes, of dimension 10
Magnitudes, Viete, Francois 8 209—210
Mercantile capitalism 2
Negative roots changed to positive roots 247 249
Negative roots of equations 6 12 219—220 229
Negative roots of equations, existence recognised but usefulness challenged 222
Noetic 221
Northumberland, 9th Earl of 3
Notation, completely symbolic notation 9
Notation, Cossic 6 13 15 213
Notation, cube root 245
Notation, Diophantine 6—7
Notation, division line 223
Notation, dots v 215
Notation, equal signs 216
Notation, equality signs 214 229
Notation, exponents 7 15
Notation, Harriot’s unique 15
Notation, inequality sign v 1
Notation, inequality signs 214 216
Notation, letters for positive numbers 213
Notation, literal 4
Notation, literal sign for a general number 6
Notation, logic embodied in notation 1
Notation, multiplication sign 13 213 215 218
Notation, negative sign 7 258
Notation, purely symbolic 1 15
Notation, revolutionary 1
Notation, separate signs for unknown and each power 6—7
Notation, square number 7—8
Notation, superscripts for collecting like terms 224 227
Notation, Viete, Franc?ois 4—5 7 8
Numerical Exegesis 21 22
Numerical logistic, Viete’s definition 8—9 209
Operation rules, Franc?ois Vie`te 209—210
Pacioli, Luca 6
Pappus 8
Pappus’ locus problem 210
Parabolismus 215 216
Pell, John 4
Pepper, Jon V 1
Plato 211
Polynomial equations with numerical coefficients, solution by successive approximations 11
Polynomial equations with numerical coefficients, use by Harriot of Vie`te’s work 9
Poristic verification 259 260 261
Posited root of equation 229
Positive roots changed to negative roots 247 249
Positive roots of equations 219
Privative roots of equations 229
Problems (section 3) related to corresponding propositions (section 4) table including roots of equations 230—232
Problems vs propositions 217
Proclus 215—216
Propositions (section 4) related to corresponding problems (section 3) table including roots of equations 230—232
Propositions vs problems 217
Pure powers 256 257
Quadratum acephalum method 258
RADIX 229
Ralegh (Raleigh), Walter 3
Real roots from conjugate complex numbers 246—247
Rectification 261
Specious arithmetic 21
Specious logistic 8—9 10
Square root of negative quantity 245
Stedall, Jacqueline A. 4
Stevin, Simon 7 21
Stifel, Michael 6
Successive approximations method 255—257
Sylvester, J.J. 6
Symbolic arithmetic 21
Symbolic logistic, Viete’s definition 9 209
Symmetric functions of roots of an equation 219 260 261
Tanner, R C H 1 4 14
Tartaglia, Niccolo 20
Theon 211 212
Torporley, Nathaniel 3
Torporley, Nathaniel, access to Harriot papers 11
Torporley, Nathaniel, contents and comparison with Harriot papers 283—285
Transposition under opposite signs 216
Trial divisor 255 257
Unaffected equation 256
Unity, conceived as a number 7
Unity, dimension of 9—10
Unity, problem of homogeneity 9
Verification by substitution 257
Viete, Francois, analysis identified with algebra as well as geometry 8
Viete, Francois, comparison with Harriot 8—11
Viete, Francois, generality of algebra 8
Viete, Francois, literal sign for a general number 6
Viete, Francois, magnitudes 8
Viete, Francois, notation 4—5 7 8
Wallis, John 4 9 233 236 238
Warner, Walter, changes made to Harriot material 287—288
Warner, Walter, conceptual connection with Vie`te 10
Warner, Walter, connection with Harriot 3
Warner, Walter, debt due to him 16
Warner, Walter, editor of Artis Analyticae Praxis 4 10—12
Warner, Walter, eulogy to Harriot 11
Warner, Walter, Harriot’s two chief discoveries 5
Warner, Walter, order of sections of Artis Analyticae Praxis 13
Whiteside, D.T. 1 2
Witmer, T Richard 9
Zero, equating all the terms of an equation to zero 13 218—219
Zero, introduced into algebra 6
Zero, use as a calculable quantity 241
Zero, use by Harriot 213
‘A quadratum’ 7—8
‘Anticipation’ 258
‘Four-root law’ 249
‘Originals’, biquadratic equations derived from them 221—222
‘Originals’, cubic equations derived from them 218 222
‘Originals’, treatment 217 218
Реклама