(for Numerus) by Xylander, Bachet, Fermat and others 38
for unknown quantity, originated with Descartes 50 n.
ryabhata 281
Ab’l — Faraj 1
Ab’l — Waf al — Bzjn 6 19
Achmm Papyrus 45
Addition, Bombelli’s sign for 22
Addition, expressed in Dioph. by juxtaposition 42
Addition, first appearance of 49 n.
Ahmes 112
al — Karkh 5 41
al — Karkh 5 41
al — Khuwrazm, Muhammad b. Ms 34 50
Alfraganus 20
Algebra, three stages of development 49—51
Algebraical notation, Bachet and Fermat 38
Algebraical notation, beginnings of modern signs 49—50 n.
Algebraical notation, Bombelli 22 38
Algebraical notation, Diophantus 34—39 41—44
Algebraical notation, earlier Italian algebraists 38
Algebraical notation, Vieta 38 39 50
Algebraical notation, Xylander 38 48
Aljabr 64
Almukbala 64
Amthor 122
Anatolius 2 18
Andreas Dudicius Sbardellatus 17 25
Angelas Vergetius 16
Anthology, arithmetical epigrams in 113—114
Anthology, indeterminate equations in 114
Anthology, on Diophantus 3
Apollonius of Perga 5 6 12 18 122
Approximations, Archimedes 278—279
Approximations, Diophantus 95—98
Approximations, Pythagoreans 117—118 278
Arabian scale of powers of unknown compared with that of Diophantus 40 41
Arabic versions and commentaries 19
Archimedes 11 12 35 278 279 290
Archimedes, Arenarius 35 122
Archimedes, Cattle — Problem 121—124 279
Archimedes, Codex Paris, of 48
Arenarius of Archimedes 35 122
Arithmetica of Diophantus, conspectus of problems in 260—266
Arithmetica of Diophantus, different titles by which known 4—5
Arithmetica of Diophantus, division into Books 5 17—18
Arithmetica of Diophantus, lost Books 5—12
Arithmetica of Diophantus, notation in 32—53
Arithmetical progression, summation of 248—249
Ars rei et census 20
Auria, Joseph 15 18
Bachet 12 16 17 21 22 25 26—29 35 45 48 80—82 87 101 107 109 110 140 173 196—197 213 220 230 232 234—235 246 271 273 287 293
Back-reckoning 56 89 93
Baillet 45 n.
Bessarion, Cardinal 17 20
Bhskara 281
Bianchini 20
Billy, Jacques de 28 165 166 184 221 267 304 308 320 321 326
Bodleian MS. of Euclid 35
Bodleian MSS. of Dioph 15 34 35
Bombelli, Algebra of 21 22
Bombelli, Rafael 11 27
Bombelli, symbols used by 22 38
Brahmagupta 281
Brancker, Thomas 286 n.
Brouncker, William, Viscount 286 288
Camerarius, Joachim 21
Cantor, Moritz 3 n. 6 63 112 118 120 125 281
Cardano 21 23 40
Cattle — Problem of Archimedes 11 12 121—124 279
Cauchy 188 274
Censo, or Zensus, = square 40 41
Charmides, scholiast to, in 113 121—122
Chasles, n Cleonides 16 n.
Coefficient, expressed by , multitude 64 n.
Colebrooke 6 281
Cosa, =the unknown 22 40
Coss 23
Cossali 1 21 40 41 140
Cracow MS. of Dioph 514 18
Cube, Euler’s solution of problem of finding all sets of three cubes having a cube for their sum 329—334
Cube, Fermat’s extensions, ibid., a cube cannot be the sum of two cubes 144
Cube, sign for cube of unknown or 38 129
Cube, Vieta’s formulae for transforming the sum of two cubes into a difference of two cubes and vice versa 101—103
Cubic equation, simple case of 66—67 242
Cuttaca (“pulveriser”), Indian method of 283
Definitions of Diophantus 32 38 39 129—131
Denominator 137
Descartes 271 273
Descartes notation 50 n.
Determinate equations, a particular cubic 66—67
Determinate equations, mixed quadratics 59—65
Determinate equations, of first and second degrees 58
Determinate equations, pure 58—59
Determinate equations, simultaneous equations leading to quadratics 66
Dionysius 2 n. 9 129
Diophantus, commentators and editors 18—31
Diophantus, date 1—2
Diophantus, Dioph. not inventor of algebra 111—116
Diophantus, epigram on 3
Diophantus, his extensions of theory of polygonal numbers 127
Diophantus, his work a collection in best sense 124
Diophantus, in Arabia 5—6 19
Diophantus, methods of solution 54—98
Diophantus, MSS. of 14—18
Diophantus, nor of indeterminate analysis 115—124
Diophantus, notation of 32—53
Diophantus, numbers as sums of four squares 110
Diophantus, numbers not sum of three squares 108—109
Diophantus, numbers which are not the sum of two squares 107—108
Diophantus, on numbers which are the sum of two squares 105—106
Diophantus, other assumptions 103 sqq.
Diophantus, porisms of 3 8—10 99—101
Diophantus, spelling of name 1
Diophantus, theorems in theory of numbers 110
Diophantus, works 3—13
Diophantus, “Pseudepigraphus” 31
Division, how represented by Dioph. 44—47
Doppelmayer 20 n.
Double-equations (for making two expressions in simultaneously squares) 11 73—87 91—92
Double-equations (for making two expressions in simultaneously squares), double equations for making one expression a square and another a cube 91—92
Double-equations (for making two expressions in simultaneously squares), general rule for solving 73 146
Double-equations (for making two expressions in simultaneously squares), two expressions of Double-equations (for making two expressions in simultaneously squares), first degree 73—80 80—82
Double-equations (for making two expressions in simultaneously squares), two expressions of second degree or one of first and one of second 81—87
Dudicius Sbardellatus, Andreas 17 25
Egyptians, beginnings of algebra, haw-calculations 111—112
Egyptians, hau, sign for 37
Egyptians, method of writing fractions 112
Egyptians, names for successive powers 41
Eisenlohr 112 n.
Enestrm 63 n. 286
Epanthema of Thymaridas 114—116
Epigrams, arithmetical, in Anthology 113—114
Epigrams, arithmetical, in Anthology, on Diophantus 3
Epigrams, arithmetical, in Anthology, one in Diophantus (V. 30) 124
Equality, abbreviation for 47—48
Equality, sign in Xylander 48
Equality, the sign = due to Recorde 50 n.
Equations see Determinate Indeterminate Double Triple etc.
Eratosthenes 121
Euclid 8 11 12 19 63 117 124 132 144 191
Eudoxus 124
Euler 56 71—72 83—85 86 90 10n. 102 107 110 145 151 160 162 178 181—182 188 224 236 241 242 268 272 274 275 286 288—292 294 297 299
Euler, J. A. 360
Euler, Supplement 329—379 passim
Eutocius 5 6
Exponents, modem way of writing due to Descartes 50 n.
Fakhr 5 41
Fermat 28 29 30 38 78 90 101 102 103 106 107 108 109 110 144—145 163 173 179—180 182 183 184 188 190—191 197 202 204 205 213—214 218 220 223 229 230 231 232 233 235 236 239 240 241 242 246 254
Fermat, cannot be solved in integers 224 293—297
Fermat, Fermat on numbers which are, or are not, the sums of two, three, or four squares respectively 110 267—275
| Fermat, Fermat’s “triple-equations” 321—328
Fermat, on equation 285—287
Fermat, on numbers of form 275
Fermat, on numbers of form or 276—277
Fermat, on numbers of of form 276 277
Fermat, problems on right-angled triangles 204—205 n. 218—219 220 229 230 231—233 235 236 239—240 297—318
Fermat, Supplement 267—328 passim 364
Fermat, “great theorem of Fermat” 144—145 n.
Frnicle 102 n. 276 277 285 287 295—297 309 310 313 314
Fractions, representation of, in Diophantus 44—47
Fractions, sign for 45
Fractions, sign for 45
Fractions, sign for submultiple 45—47
Gnther 6 278 279
Gardthausen 35 36
Geminus 4
Georg v. Peurbach 20
Georgius Pachymeres 18 19 31 37
Girard, Albert 30 106
Gnomons 125
Gollob 14 18
Grammateus (Schreiber), Henricus 49 n. 50
Greater and less, signs for 50 n.
Hrigone 50 n.
hankel 6 54—55 108 281 283 284 286
Harriot 50 n.
Hau ( = “heap”), the Egyptian unknown quantity 37 112
Heiberg 35 48 118 205
Henry, C. 13 28
Heron 12 13 35 36 43 44 45 63 129
Hippocrates of Chios 63 124
Holzmann, Wilhelm see Xylander
Hultsch 2 n. 3 4 9 10 11 12 19 35 36 37 47 63 118 122 253
Hydruntinus, Ioannes 16
Hypatia 5 6 14 18
Hypsicles 2
Hypsicles, on polygonal numbers 125—126 252 253
Iamblichus 2 3 37 49 50 115—116 126
Ibn ab Usaibi’a 19
Ibn al — Haitham 19
Identical formulae in Diophantus 104 105
Indeterminate equations, solved by Pythagoreans 117—118 278 310
Indeterminate equations, double-equations for making one expression a square and another a cube 91—92
Indeterminate equations, double-equations for making two expressions simultaneously squares 11
Indeterminate equations, double-equations for making two expressions simultaneously squares, two expressions of first degree 73—80 80—82
Indeterminate equations, double-equations for making two expressions simultaneously squares, two of second degree, or one of second and one of first 81—87
Indeterminate equations, how to find fresh solutions when one is known 68—70
Indeterminate equations, indeterminate equations in Anthology 114
Indeterminate equations, other Greek examples 118—121
Indeterminate equations, rule for solving double-equations in which two expressions are to be made squares 73 146
Indeterminate equations, single, of higher degrees 87—91
Indeterminate equations, single, of second degree 67—73
Indian method 12—13 21
Indian solution of 281—285 290 292
Inventum Novum of J. de Billy 28 165 184 198 204 205 n. 230 231 239
Inventum Novum of J. de Billy, Supplement 267—328 passim
Ioannes Hydruntinus 16
Ishq b. Ynis 19
Italian scale of powers 40 41
jacobi 108 n. 288
Kausler 31
Kaye, G. R. 381
Ka’b, Arabic term for cube of unknown 41 n.
Kenyon 45
Konen 378 379 281 385 386 388 391
kronecker 388
Krumbiegel 113
Kummer 145 n.
Lagrange 73 110 188 373 373 274 275 276 277 285 387 388 290 293 299 300
Lato, “side” 40 n.
legendre 107 n. 109 188 273
Lehmann 35
Lejeune — Dirichlet 145 288
Leon 124
Leonardo of Pisa 11 41 120
Less and greater, signs for 50 n.
Limits, approximation to 95—98
Limits, method of 57 94 95
Logistica speciosa and Logistica numerosa distinguished by Vieta 49
Loria 63 n. 157 168 175 176 195 197 207 340 241
Lousada, Abigail 31
Luca Paciuolo 31 40
Ml, Arabic term for square 41 n.
Madrid MS. 14 15 16
Manuscripts of Diophantus 14—18
Maximus Planudes 13 14 19 21 31 43 44 45 46 48
Measurement of a Circle (Archimedes) 122
Mendoza 17
Metrica of Heron 43 44 45 63 129
Metrica of Heron, MS. of 118
Metrodorus 5 113
Minus, Diophantus’ sign for 41—44 130
Minus, Diophantus’ sign for, Bombelli’s abbreviation 22
Minus, Diophantus’ sign for, modern sign for 49
Minus, Diophantus’ sign for, same sign in Heron’s Metrica 43 44
Minus, Diophantus’ sign for, Vieta’s sign for difference between (= for ) 50 n.
Montchall, Carl v 18
Montucla 28
Moriastica of Diophantus 3—4
Muhammad b. Ms al —Khuwrazm 34 50
Multiplication, signs for 50 n.
Murr, Ch. Th. v 10
Negative quantities not recognised by Diophantus as real 53—53
Nesselmann 6—10 21 35 26 39 34 49—51 55—58 67 87 89 93 108 140 173 304 207 252 329
Nicomachus 3 136 127
Notation, algebraic, Diophantus’ notation 33—49 51—53
Notation, algebraic, three stages 49—51
Nuez 23
Numbers which are the sum of two squares 105—107 368—371
Numbers which are the sum of two squares, corresponding theorem for triangles, pentagons, etc 188 373
Numbers which are the sum of two squares, numbers not square are the sum of two, three or four squares 110 373 374
Numbers which are the sum of two squares, numbers which are not 107—108 371—373
Numbers which are the sum of two squares, numbers which are the sum of three squares 373—373
Numbers which are the sum of two squares, numbers which are the sum of three squares, numbers which are not 108—109 373
Numerus, numero, term for unknown quantity 38 40
Oughtred 50 n.
Ozanam 288
Pachymeres, Georgius 18 19 31 37
Paciuolo, Luca 21 40
Pappus 11 13
Papyrus Rhind 113
Papyrus Rhind, Berlin papyrus 6619 113
Paris MSS. of Diophantus 15 16 18
Pazzi, A. M. 31
Pell, John 31 386 288
Peurbach, G. von 20
Philippus of Opus on polygonal numbers 125
Planudes, Maximus 13 14 19 21 31 43 44 45 46 48
Plato 4 38 111 113 116 125
Plus, signs for 23 49
Plus, signs for, expressed in Diophantus by juxtaposition 39
Plutarch 137
Polygonal Numbers, began with Pythagoreans 124—125
Polygonal Numbers, Diophantus’ extensions 137
Polygonal Numbers, figured by arrangement of dots 125
Polygonal Numbers, Hypsicles on 125—136 353 353
Polygonal Numbers, sketch of history of subject 124—127
Polygonal Numbers, treatise on 3 11—12 247—259
Porisms of Diophantus 3 8—10 99—101 301 303 314
Poselger 30 98
Powers of unknown quantity and signs for 37—39 139
Powers of unknown quantity and signs for, Egyptian scale 41
Powers of unknown quantity and signs for, Italian and Arabian scale (multiplicative) contrasted with Diophantine (additive) 40—41
Proclus 4 113 116 117 118 242
Psellus 2 14 18 41 111
Ptolemy 18 44
Pythagoreans 3
Pythagoreans on rational right-angled triangles 116 24 2
Pythagoreans, on indeterminate equation 117—118 378 310
Pythagoreans, on polygonal numbers 134—135
|