Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Luger G.F., Stubblefield W.A. — Artificial Intelligence: Structures and Strategies for Complex Problem Solving
Luger G.F., Stubblefield W.A. — Artificial Intelligence: Structures and Strategies for Complex Problem Solving



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Artificial Intelligence: Structures and Strategies for Complex Problem Solving

Àâòîðû: Luger G.F., Stubblefield W.A.

Àííîòàöèÿ:

Combines the theoretical foundations of intelligent problem-solving with he data structures and algorithms needed for its implementation. The book presents logic, rule, object and agent-based architectures, along with example programs written in LISP and PROLOG. The practical applications of AI have been kept within the context of its broader goal: understanding the patterns of intelligence as it operates in this world of uncertainty, complexity and change.
The introductory and concluding chapters take a new look at the potentials and challenges facing artificial intelligence and cognitive science. An extended treatment of knowledge-based problem-solving is given including model-based and case-based reasoning. Includes new material on: Fundamentals of search, inference and knowledge representation AI algorithms and data structures in LISP and PROLOG Production systems, blackboards, and meta-interpreters including planers, rule-based reasoners, and inheritance systems. Machine-learning including ID3 with bagging and boosting, explanation basedlearning, PAC learning, and other forms of induction Neural networks, including perceptrons, back propogation, Kohonen networks, Hopfield networks, Grossberg learning, and counterpropagation. Emergent and social methods of learning and adaptation, including genetic algorithms, genetic programming and artificial life. Object and agent-based problem solving and other forms of advanced knowledge representation.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: third edition

Ãîä èçäàíèÿ: 1998

Êîëè÷åñòâî ñòðàíèö: 824

Äîáàâëåíà â êàòàëîã: 10.03.2006

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
15-puzzle      18 89
8-Puzzle      88—91 102—105 131—144 174—175 204 226
Abduction      80 206 248 281—283
Abduction, coherence-based selection      283
Abduction, cost-based      283
Abduction, logic-based      281—283
Abduction, set cover      281
Abel      267—268 290
Abelson, H.      324 511 556 775
ABSTRIPS      199 566
Ackley, D.H.      747
ACT*      174 770
Active images      353
Active values      353
Admissibility      127 139—142 156—157 758
Aeschylus      3
Agent-based systems      761—764
agents      13—17 293 345 440 770 774
Agglomerative clustering      651
Agre, P.      24 777
Aho, A.      121
Aiello, N.      198
Alexander, C.      517
Algorithm A      140
Algorithm A*      140—144 156—157 723
Allen, J.      30 199 520 542 555—556
Alpha-beta pruning      127 150—152 156
Alty, J.      245
AM      25 649—650
Amarel, S.      266 290
Analogy      25 607 646—649
Analogy, inference      646
Analogy, retrieval      646
Analogy, structure mapping      647
Analogy, systematicity      648—649
Analytic engine      7—8 17
And elimination      66—67
And introduction      66—67
And/or graph search      164—165 169
And/or graphs      109—121 154 164—169 222—223 594
Anderson, J.A.      696 712
Anderson, J.R.      30 174 301 334 562 696 712 769—770 776 780
Andrews, P.B.      79
Answer extraction      574 583—587 592
Appelt, D.      62
Arbib.M.      741
Aristotle      4—5 8—9 29—31 217 247 778
Arity      53—54 56
Artificial intelligence defined      1—2 28—29 755
Artificial life      15 604 714—715 736—747
Ashley, K.      235
Associationist representation      297—309 334
Associationist theories      297—309 334
Associative law      51
Associative memory      696—711 767 “Conceptual
Assumption-based truth maintenance      278—281
Asunuma, C.      26
Attractor network      663 701—711
Auer, P.      659
Augmentations of logic grammars      534
Augmented phrase structure grammars      534 555
Augmented Transition Networks      528 533—538 556
Austin, J.L.      14 778
Autoassociative memory      663 696—711
Autoepistemic logic      272
Automated reasoning      8—9 15 19 30 45 67 517—518 559—601
Automated reasoning and logic programming      587—593
Automated reasoning and PROLOG      587—593
Automated reasoning, answer extraction      574 583—587 592
Automated reasoning, binary resolution      567 573—578 597
Automated reasoning, breadth-first strategy      579—580
Automated reasoning, clause form      567—573 593
Automated reasoning, completeness      566
Automated reasoning, conjunctive normal form      569—572
Automated reasoning, converting to clause form      568—573 576
Automated reasoning, demodulation      598—599
Automated reasoning, factoring      575
Automated reasoning, General Problem Solver      172—174 203—204 560—566 757—758 766 768
Automated reasoning, Herbrand’s theorem      600
Automated reasoning, heuristics      578—583 593—596
Automated reasoning, horn clause      361 472 588—589 593 636
Automated reasoning, hyperresolution      575 597
Automated reasoning, linear input form      581 592
Automated reasoning, literal      567 573 589
Automated reasoning, logic theorist      203 560—562
Automated reasoning, means-ends analysis      204 560—566 757 766—767
Automated reasoning, natural deduction      560 599—600
Automated reasoning, paramodulation      598—600
Automated reasoning, prenix normal form      570
Automated reasoning, refutation      566—567 573—577
Automated reasoning, refutation completeness      566—567 579
Automated reasoning, resolution      30 66—67 350 560 566—577
Automated reasoning, resolution refutation      566—577
Automated reasoning, rule-based approaches      593—596
Automated reasoning, set of support      560 580 600
Automated reasoning, skolemization      68 569—571
Automated reasoning, soundness      65—67 566 593
Automated reasoning, subsumption      583 600
Automated reasoning, unit preference      560 580—581 592
Automated reasoning, unit resolution      581 600
Automated reasoning, weak methods      593
Axon      26
Babbage, C.      7—8 29
Back chaining      758
Backpropagation      662 668 675—682 771
Backtracking      96—101 110 130 160 163 176 198 223 361 368 592
Backward chaining      93—96 112—116
Bacon, F.      203
Baker, J.D.      21
Ballard, D.      711 780
Balzer, R.      198
Bareiss, E.R.      235
Barker, V.      174
Barkow, J.H.      762
Barr, A.      30 199
Bartlett, F.      324
Base-level categories      654
Bates, E.A.      711 780
Bateson, G.      29
Bauer, M.A.      768
Bayesian belief networks      252—258
Bayesian belief networks, causal influence measure      252
Bayesian belief networks, d-separation      255
Bayesian belief networks, qualitative influence graph      256—258
Bayesian belief networks, qualitative probabilistic network      256—258
Bayesian reasoning      249—258 263 518 769
Bayesian reasoning, Bayes theorem      251
Bayesian reasoning, belief networks      252—258
Bayesian reasoning, complexity      251
Bayes’theorem      251
Beam search      624
Bechtel, W.      780
Behaviorism      23
Benson, S.      199 201 742 748 765
Berger.A.      550
Best-first search      99 107 127—136 156 384—386 462—463 560
Best-first search, implementation      131—136
Bhaskar, R.      769
Bidirectional associative memory      702—706
Binary resolution      567 573—578 597
Binding      39 69—70 343 428
Blackboard architecture      46 160 196—199
Blake, A.      519
Bledsoe, W.      30 566 599—600
Blocks world      22 26 37 62—63 188—196 386—389 520—521 608—612
Bobrow, D.      293 335
Boole, G.      8 29
Boolean algebra      8
Bottom-up parsing      526
Bower, G.H.      301 334
Boyer.R.S.      19 30 600
Brachman, R.      79 205 304 328 330 333 335 776
Branch and bound      92
Branching factor      96 153—154 182
Breadth-first search      99—105 159 162 174 383—384 459—461 560—561 579—580
Bridges of Koenigsberg problem      7 82—84 121
Brooks, R.A.      24 715 741—742 747 765 770 777
Brown, J.S.      232 245 649—650 768
Brown, P.      550
Brownston, L.      184 199
Buchanan, B.G.      20 245 263 287 289 639
Bucket brigade algorithm      725—730
Bundy, A.      79 335 768—769
Burks, A.W.      740 747
Burroughs, W.S.      753
Burstall, R.M.      9
Burton, R.R.      245 768
Byron, A.      4 17
Candidate elimination algorithm      613—620
Car/cdr recursion      441—443
Carbonell, J.G.      239 659
Carnap, R.      778
Carroll, L.      425
CART trees      546—547
Case frame      540
Case-based reasoning      206 209—210 235—242
Case-based reasoning, case adaptation      237
Case-based reasoning, case retrieval      236—238
Case-grammars      555
Casey      235
CASNET      266—267 290
Category formation      605
Category utility      656
Causal influence measure      252
Causal networks      266—268
CBR      see “Case-based reasoning”
Ceccato, S.      301
Cellular automata      713—714 736—747
Certainty factor algebra      see “Certainty theory”
Certainty theory      206 249 263—266 402—411
Chang, C.L.      81 569 579 600
Chapman, D.      24 777
Charniak, E.      121 283 289 328 556
Checkers      18 127 147—148
Chess      18 42—44 164—170
Chomsky hierarchy      531—533 556
Chomsky, N.      532
Chorfas, D.N.      245
Chronological backtracking      276
Church, A.      351 775
Circumscription      249 274—275
Clancy, W.J.      231 768
Clarke, A.C.      17 713
Classifier systems      715 725—730
Classifier systems and production systems      726—728
Classifier systems, bucket brigade algorithm      725—730
Classifier systems, condition strength      728—730
Classifier systems, fitness function      727
Classifier systems, fitness measures      714—719 727 735—736 744
Clause form      567—573 593
CLIPS      174
Clocksin, W.F.      350 358 421
CLOS      347 497—511
CLOS, class precedence list      503—505
CLOS, defining classes      499
CLOS, function, defclass      499—501
CLOS, function, defgeneric      501—503
CLOS, function, defmethod      503
CLOS, generic functions      498—503
CLOS, inheritance      503—505
CLOS, meta-classes      505
CLOS, multiple inheritance      503—505
CLOS, simulation      505—511
CLOS, slot options      499—501
CLOS, slot-specifiers      499—501
CLOS, thermostat simulation      505—511
Closed world assumption      235 270 273—274 360 592—593
CLUSTER/2      605 635 773
CNF Satisfaction      717—719
COBWEB      605 769
Codd, E.F.      741
CoG      765
Cognitive neuroscience      759
Cognitive science      23 30 760—762 766—770 776 779
Cohen, PR.      199
Coincidence learning      see “Hebbian learning”
Colby, K.M.      30 304
Collins, A.      298 334—335 767
Colmerauer, A.      350
Common LISP Object System      see “CLOS”
Commonsense reasoning      17 21 213 521
Commutative law      51
Competitive learning      662 682—690
Completeness      65—67 566
complexity      88—92 105—106 124—127 152—155
Complexity and Bayesian reasoning      251
Composition of substitutions      69—70
Concept learning      605
Concept space      606—608
Conceptual clustering      605—606
Conceptual dependencies      294 305—309 324—328 556
Conceptual graphs      309—320 334 534 538—543 551—556 756
Conceptual graphs and frames      321
Conceptual graphs and modal logic      318—320
Conceptual graphs and predicate calculus      318—320
Conceptual graphs, absurd type      314
Conceptual graphs, canonical formation rules      316
Conceptual graphs, concepts      309—310
Conceptual graphs, conceptual relations      309—310
Conceptual graphs, copy rule      314
Conceptual graphs, existential quantification      318—319
Conceptual graphs, generalization      314—316
Conceptual graphs, individuals      311—312
Conceptual graphs, inheritance      314—316
Conceptual graphs, join      314—317
Conceptual graphs, marker      311—312
Conceptual graphs, names      311—312
Conceptual graphs, proposition nodes      316—318
Conceptual graphs, quantification      318—320
Conceptual graphs, referent      312
Conceptual graphs, restrict      314—316
Conceptual graphs, simplify      314
Conceptual graphs, specialization      314—316
Conceptual graphs, subtype      311—313
Conceptual graphs, type hierarchy      313—316
Conceptual graphs, type lattice      313
Conceptual graphs, types      311—312
Conceptual graphs, universal quantification      318—319
Conceptual graphs, universal type      314
Conceptual models      216—219
Condition      171—186
conflict resolution      171—186
Conflict resolution, recency      184
Conflict resolution, refraction      184
Conflict resolution, specificity      184
Conflict set      171—186
Conjunction      48—50 56 59—60 568
Conjunctive normal form      569—572
Connectionist models of intelligence      15 26—27 518 603—604 661—712 759—761 773—774
Connectionist models of intelligence, activation level      664
Connectionist models of intelligence, associative memory      696—711
Connectionist models of intelligence, attractor      701
Connectionist models of intelligence, attractor network      663 701—711
Connectionist models of intelligence, autoassociative memory      663 696—711
Connectionist models of intelligence, backpropagation      662 668 675—682 771
Connectionist models of intelligence, backpropagation & exclusive or      681—682
Connectionist models of intelligence, bidirectional associative memory      702—706
Connectionist models of intelligence, classification      668 672
Connectionist models of intelligence, competitive learning      662 682—690
Connectionist models of intelligence, counter propagation      663 683 686—690
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå