Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Luger G.F., Stubblefield W.A. — Artificial Intelligence: Structures and Strategies for Complex Problem Solving
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Artificial Intelligence: Structures and Strategies for Complex Problem Solving
Àâòîðû: Luger G.F., Stubblefield W.A.
Àííîòàöèÿ: Combines the theoretical foundations of intelligent problem-solving with he data structures and algorithms needed for its implementation. The book presents logic, rule, object and agent-based architectures, along with example programs written in LISP and PROLOG. The practical applications of AI have been kept within the context of its broader goal: understanding the patterns of intelligence as it operates in this world of uncertainty, complexity and change.
The introductory and concluding chapters take a new look at the potentials and challenges facing artificial intelligence and cognitive science. An extended treatment of knowledge-based problem-solving is given including model-based and case-based reasoning. Includes new material on: Fundamentals of search, inference and knowledge representation AI algorithms and data structures in LISP and PROLOG Production systems, blackboards, and meta-interpreters including planers, rule-based reasoners, and inheritance systems. Machine-learning including ID3 with bagging and boosting, explanation basedlearning, PAC learning, and other forms of induction Neural networks, including perceptrons, back propogation, Kohonen networks, Hopfield networks, Grossberg learning, and counterpropagation. Emergent and social methods of learning and adaptation, including genetic algorithms, genetic programming and artificial life. Object and agent-based problem solving and other forms of advanced knowledge representation.
ßçûê:
Ðóáðèêà: Computer science /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: third edition
Ãîä èçäàíèÿ: 1998
Êîëè÷åñòâî ñòðàíèö: 824
Äîáàâëåíà â êàòàëîã: 10.03.2006
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Genetic algorithms, traveling salesperson 717—721
Genetic operators see “Crossover” “Mutation” “Inversion” “Order “Permutation”
Genetic programming 715 730—736
Gennari, J.H. 655
Gentner, D. 647
Giarratano, J. 245—246
Gillett, J. 550
Gluck, M. 656
Glymour, C. 30 249
Goal regression 643
Goal state 87
Goal-directed search 167 181—183 198 206 220—225 561 595—596
Goal-driven reasoning 206 220—225
Goal-driven search 93—96 112—116 121
Goedel, K. 5 8 14
Goethe, J.W. 603
GOFAI 14
Goldberg, D.E. 724 747
Goodwin, J. 277
Gould, S.J. 747 749
GPS see “General Problem solver”
Gradient descent learning 673 (see also “Delta rule”)
Graham, P. 511
Grammar 116—121
Graph theory 7 10 42 84—88
Graph theory, ancestor 85—86
Graph theory, arc 40
Graph theory, child 85—86
Graph theory, connected nodes 87
Graph theory, cycle 85—88
Graph theory, descendant 85—86
Graph theory, directed acyclic graph 88
Graph theory, directed graph 85
Graph theory, Hamiltonian path 121
Graph theory, labeled graph 84—85
Graph theory, leaf node 86
Graph theory, link 40 42
Graph theory, loop 85—88
Graph theory, node 42 84—88 121
Graph theory, parent 85—86
Graph theory, path 85—86
Graph theory, rooted graph 85—86
Graph theory, sibling 85—86
Graph theory, tree 85—87
Gray coding 722
Grice, H.P. 14 283 778
Grossberg learning 686—690
Grossberg.S. 663 687 711—712
Grosz, B. 23 769 778
Ground instance 69
Guha, R.V. 758
Hacker 26
Haibit, L.H. 665
Hall, R.P. 646
Hamiltonian path 121
Hamming distance 697—700 703—706
Hammond, K. 239
Hamscher.W. 233 246
Hanson, J.E. 745
Harbison-Briggs, K. 245
Harmon, P. 30 245 299
Harris, M.D. 556
Hasemer, T. 511
Haugeland.J. 29 780
Haussler, D. 638
Hayes, J. 30
Hayes, P. 12 187 249 294 334 350
Hayes-Roth, B. 748
Hayes-Roth, F. 30 199 245
HEARSAY-II 196—199
HEARSAY-III 198—199
Hebb, D.O. 663 665 690 711
Hebbian learning 663 688—696 773
Hecht-Nielsen, R. 662 682—683 686—687 706 711—712 771 774
Heidegger, M. 14 778
Heidorn.G.E. 534
Helman, P. 121
Hempel, C.G. 780
Henrion, M. 258 291
Herbrand’s theorem 600
Heteroassociative memory 663 697
Heuristics 18—20 24—25 28 30 44 46 92 106 121 123—159 204 208 215 229—234 346 353 560—566 578—583 593—596 605 607 619—636 645 755 759
Heuristics and expert systems 136—139
Heuristics and the 8-puzzle 131—144
Heuristics in and/or graphs 154
Heuristics, admissibility 127 139—142 156—157
Heuristics, Algorithm A 140
Heuristics, Algorithm A* 140—144 156—157
Heuristics, alpha-beta pruning 127 150—152 156
Heuristics, best-first search 156
Heuristics, branching factor 153—154
Heuristics, complexity 124—127 152—155
Heuristics, evaluation function 131—136 139—143
Heuristics, game playing 144—152
Heuristics, hill climbing 127 129 148 757
Heuristics, horizon effect 149
Heuristics, implementation 131—136
Heuristics, information theoretic 628—631
Heuristics, informedness 129 139 142—144 153—157
Heuristics, means-ends analysis 204 757
Heuristics, minimax 127 144—152 156—157
Heuristics, monotonicity 127 139—142 156
Heuristics, nearest neighbor 92 121
Heuristics, Samuel’s checker player 127 148
Heuristics, strong methods 204—206
Heuristics, tic-tac-toe 149—152
Heuristics, weak methods 204
Hierarchical abstraction 340
Hierarchical problem decomposition 24
Higher order functions 455—458
Higher order predicate calculi 61—62
Hightower, R. 741 747
Hill climbing 127 129 628 657 675 723 757
Hillis, D.W. 27
Hinsley, D. 768—769
Hinton, G.E. 712
Hobbes.T. 778
Hobbs, J.R. 290
Hodges, A. 30
Hoff, M.E. 673
Holland, J.H. 665 683 691 715 723—727 747—748 761
Holte, R.C. 659
Holyoak, K.J. 659
Homomorphism 333
Hopcroft, J.E. 532 556
Hopfield networks 701 706—711
Hopfield, J.J. 663 701 706 712
Horizon effect 149
Horn clause 361 472 588—589 593 636
Horowitz, E. 92 121
How query 211 224—225 400—401
Human associative memory 767 (see also “Associative memory”)
Human development 763 769—770
Human performance modeling 23
Human problem solving 41 186
Hume, D. 7 357 634 778
Husserl, E. 14 778
Hybrid design 243—244
Hybrid programming environments 353
Hyperarc 109
Hypergraph 109
Hyperresolution 575 597
ID3 26 249 547—548 605 619 624—636 650 680
ID3 and hill climbing 628
ID3, bagging 633
ID3, boosting 633
ID3, information theoretic test selection 628—631
ID3, performance evaluation 632—633
ID3, top-down decision tree induction 627—628
Ignizio, J.P. 245
Image processing 35—36
Imitation game see “Turing Test”
Implication 48—50 56 59—60 198
Improper symbols 53
Inconsistant 65—66
Induction 603—633 771—775
Inductive bias 604—605 624 633—639 662 772—773
Inference Engine 210
Informality of behavior 12
Information theory 628—631
Informedness 129 139 142—144 153—155 758
inheritance 40 294—300 303 313—316 328—331 355 411—415 497 503—505
Intensional definition 295 652
INTERNIST 21
Interpolative memory 697—700
Interpretation 49—50 59—60
inversion 717—718
Jackson, P 289
Java 342
Jeannerond, M. 711 780
Johnson, D. 124
Johnson, L. 245 289 768
Johnson, M. 777
Johnson, M.A. 711 780
Johnson, P. 769
Johnson-Laird, P. 776
Jones, R.S. 696 712
Josephson, J.R. 291
Josephson, S.G. 291
Justification-based truth maintenance 276—279
k-connector see “Hyperarc”
Kant, I. 559
Karmiloff-Smith, A. 711 763 780
Kay, A. 352
Kedar-Cabelli, S. 646 659
KEE 347
Keravnou, E.T. 245 289 768
King, D. 30
King, S.H. 421
Klahr, D. 658
Klahr, P. 199 245 289
Klein, W.B. 765
Knight, K. 121 289
Knight’s tour problem 164—170 175—180 226 366—369
Knowledge acquisition 216—219
Knowledge engineering 20 209—219 235
Knowledge level 340—342 345 645
Knowledge representation 1 17 24 33—41 45 206 240—244 293—337 411—421 497 503—505 534 538—543 556 756—757
Knowledge representation hypothesis 206
Knowledge representation, associationist representation 297—309 334
Knowledge representation, conceptual dependencies 294 305—309 324—328 556
Knowledge representation, conceptual graphs 309—320 334 534 538—543 551—556 756
Knowledge representation, declarative representation 415—421
Knowledge representation, demons 296
Knowledge representation, efficiency 333
Knowledge representation, exceptions 329—331
Knowledge representation, exhaustiveness 333
Knowledge representation, extensional representation 295
Knowledge representation, frame problem 187—191 333
Knowledge representation, frames 206 294 320—324 335 353 412—415 534 538 756
Knowledge representation, higher-order logics 334
Knowledge representation, homomorphism 333
Knowledge representation, inheritance 40 294—300 303 313—316 328—331 355 411—415 497 503—505
Knowledge representation, intensional representation 295
Knowledge representation, meta-knowledge 295
Knowledge representation, modal logics 334
Knowledge representation, MOPs 308 328
Knowledge representation, multiple-valued logics 334 360
Knowledge representation, naturalness 331—333
Knowledge representation, plasticity 333
Knowledge representation, schemas see “Frames”
Knowledge representation, scripts 294 308 324—328 756
Knowledge representation, semantic network 10 23 36 40 107 206 294 299—309 343 411—412 494—497 518 527 756 767
Knowledge representation, standardization of network relationships 303—309
Knowledge representation, taxonomy of representation schemes 294
Knowledge representation, temporal logics 334
Knowledge-base editor 211
Knowledge-Based System 17—18 20 25—26 36 47 203—246 758
Knowledge-level learning 645
Kodratoff, Y. 30 658
Kohonen networks 684—689
Kohonen, T. 662—663 682 684 696 712
Kolmogorov, A.N. 774
Kolodner, J.L. 237—239 245—246 328
Korf, R.E. 106
Korzybski, A. 339
Kosko.B. 702 712
Koton, P. 235
Kowalski, R. 250 421—422 566 587—588 590 600
Koza, J.R. 715 731—733 747—748
KR-ONE 335
KRL 335
Kuhn, T.S. 780
Kulikowski, C.A. 266 290 659
Labeled graph 84—85
Lady Lovelace’s objection 12
Lafferty.J. 550
Lakatos, I. 780
Lakoff.G. 650 684 770
Lalanda, P. 748
Lambda expressions 457—458
Langeland-Knudsen, J. 245 289
Langley, P. 650 659
Langton, C.G. 30 683 715 741 747 765
LaoTzu 425
Larkin, J. 174 769
Lauritzen, S.L. 258 289 291
Law of the excluded middle 284
Leake, D.B. 239 245
Learnability 633—638
Learning see “Machine learning”
Lee, R.C. 79 569 579 600
Lehman, J.F. 747
Leibniz, G.W. von 7 13 357 778
Leiserson, C. 121
Lenat, D.B. 25 649—650 758
Lennon, J. 312 339
Lesser, V.R. 199
Levesque, H.J. 79 205 281—283 294 333 335 776
Lex 619—623 635 644
Lexical closure 482—483
Lieber, J. 123
Lifschitz, V. 274—275 290
Linde.C. 769
Lindsay, R.K. 20 199
Linear associator network 696—700 702 711
Linear input form 581 592
Linear inseparability 773
Link grammars 550
Lisp 17 25 41 70 161 180 206 225 289 294 339 342—349 351 397—398 425—515 731 “Lisp
LISP and functional programming 425—426
LISP and global variables 459
LISP and symbolic computing 436—438
LISP functions, * 428
LISP functions, + 428
LISP functions, - 428
LISP functions, / 428
LISP functions, < 434
LISP functions, = 428—434
LISP functions, > 428
LISP functions, >= 434
LISP functions, acons 469
LISP functions, and 435
LISP functions, append 441
LISP functions, apply 456—457
LISP functions, assoc 468—469
LISP functions, car 438—439
LISP functions, case 509
LISP functions, cdr 438—439
LISP functions, cond 433—434
Ðåêëàìà