Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Luger G.F., Stubblefield W.A. — Artificial Intelligence: Structures and Strategies for Complex Problem Solving
Luger G.F., Stubblefield W.A. — Artificial Intelligence: Structures and Strategies for Complex Problem Solving



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Artificial Intelligence: Structures and Strategies for Complex Problem Solving

Àâòîðû: Luger G.F., Stubblefield W.A.

Àííîòàöèÿ:

Combines the theoretical foundations of intelligent problem-solving with he data structures and algorithms needed for its implementation. The book presents logic, rule, object and agent-based architectures, along with example programs written in LISP and PROLOG. The practical applications of AI have been kept within the context of its broader goal: understanding the patterns of intelligence as it operates in this world of uncertainty, complexity and change.
The introductory and concluding chapters take a new look at the potentials and challenges facing artificial intelligence and cognitive science. An extended treatment of knowledge-based problem-solving is given including model-based and case-based reasoning. Includes new material on: Fundamentals of search, inference and knowledge representation AI algorithms and data structures in LISP and PROLOG Production systems, blackboards, and meta-interpreters including planers, rule-based reasoners, and inheritance systems. Machine-learning including ID3 with bagging and boosting, explanation basedlearning, PAC learning, and other forms of induction Neural networks, including perceptrons, back propogation, Kohonen networks, Hopfield networks, Grossberg learning, and counterpropagation. Emergent and social methods of learning and adaptation, including genetic algorithms, genetic programming and artificial life. Object and agent-based problem solving and other forms of advanced knowledge representation.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: third edition

Ãîä èçäàíèÿ: 1998

Êîëè÷åñòâî ñòðàíèö: 824

Äîáàâëåíà â êàòàëîã: 10.03.2006

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
LISP functions, cons      439
LISP functions, declare      481
LISP functions, defclass      499—501
LISP functions, defgeneric      501—503
LISP functions, defmethod      503
LISP functions, defun      432—433
LISP functions, eq      452
LISP functions, equal      439
LISP functions, eval      430—431 456—457
LISP functions, funcall      456—457
LISP functions, gensym      480—481
LISP functions, get      495
LISP functions, if      435
LISP functions, length      429
LISP functions, let      446—448
LISP functions, list      429
LISP functions, listp      448
LISP functions, mapcar      457—458
LISP functions, member      429 434—435 460
LISP functions, minusp      434
LISP functions, nth      428—429
LISP functions, null      429 448
LISP functions, numberp      434
LISP functions, oddp      434—435
LISP functions, or      435
LISP functions, plusp      434
LISP functions, print      435—436
LISP functions, quote      430—431
LISP functions, read      470
LISP functions, remprop      496
LISP functions, set      444
LISP functions, setf      444 446 495
LISP functions, terpri      470
LISP functions, zerop      434
LISP, a-list      467—469
LISP, applying functions      428
LISP, association lists      461—469
LISP, atom      426
LISP, best-first search      462—463
LISP, binding      428
LISP, binding variables      444—446
LISP, bound variable      444—456
LISP, breadth-first search      459—461
LISP, car/cdr recursion      441—443
LISP, class precedence list      503—505
LISP, CLOS      347 497—511
LISP, Common Lisp Object System see      CLOS
LISP, conditionals      433—436
LISP, control of evaluation      430—431
LISP, data abstraction      436—438
LISP, data types      448—449
LISP, defining classes      499
LISP, defining functions      431—433
LISP, delayed evaluation      482—486
LISP, depth-first search      449—455 459—460
LISP, dotted pairs      468
LISP, evaluation      427—431
LISP, expert system shell      486—494
LISP, farmer, wolf, goat cabbage problem      449—455
LISP, filters      455—457
LISP, form      428—430
LISP, free variable      445
LISP, function closure      482—483
LISP, functional arguments      457—458
LISP, generic functions      498 501—503
LISP, higher-order functions      455—458
LISP, inheritance      497 503—505
LISP, lambda expressions      457—458
LISP, lexical closure      482—483
LISP, list defined      426—427
LISP, local variables      446—448
LISP, logic programming      472—481
LISP, maps      455—457
LISP, meta-classes      505
LISP, meta-interpreters      469—472
LISP, meta-linguistic abstraction      472
LISP, multiple inheritance      503—505
LISP, nil      427
LISP, pattern matching      463—469
LISP, predicates      433—436
LISP, procedural abstraction      455—458
LISP, program control      433—436 453—454
LISP, property list      494—497
LISP, read-eval-print loop      427 469—472
LISP, recursion      438—443
LISP, s-expression      426 429—430 731
LISP, semantic networks      494—497
LISP, simulation      505—511
LISP, slot options      499—501
LISP, slot-specifiers      499—501
LISP, special declaration      481
LISP, state-space search      449—455
LISP, streams      474—476 482—486
LISP, streams and delayed evaluation      482—486
LISP, thermostat simulation      505—511
LISP, tree-recursion      441—443
LISP, unification      463—469
Literal      567 573 589
Littman, M.      747
Lloyd, J.W.      350
Locke, J.      603 778
Logic      5 7—10 13—15 19 33 37—41 46—84 90 107—120 160 164—170 179 183—184 188—196 294 297—298 318—320 343 350 358—361 427 560 566—589 593 607—608 758—759 “First-order “Automated
Logic programming      347 350 472—481 587—593
Logic programming in LISP      472—481
Logic Theorist      203 560—562
Logical inference      107—108
Logically follows      64—66
LOGO      215 352
Long-term memory      173
Lovelace, A.      7—8 12 17
Loveland, D.W.      600
lt      see “Logic Theorist”
Lucas, R.      421
Luger, G.F.      23 30 174 198—199 217 235—237 239 246 335 562 768—769 776 780
Maass, W.      659
Machine learning      16—17 21 25 28 30 41 43 45 237 351 517—518 520 603—712 760 770—775
Machine learning, AM      25 649—650
Machine learning, analogical      607 646—649
Machine learning, autoassociative memory      696—711
Machine learning, BACON      650
Machine learning, bidirectional associative memory      702—706
Machine learning, candidate elimination algorithm      613—620
Machine learning, category formation      605
Machine learning, classification      668 672
Machine learning, CLUSTER/2      605 635 652—653 684
Machine learning, COBWEB      605 653—658 684
Machine learning, competitive learning      662 682—690
Machine learning, concept learning      605
Machine learning, concept space      606 608
Machine learning, conceptual clustering      605—606 651—653
Machine learning, conjunctive bias      636
Machine learning, connectionist      603—604 661—712
Machine learning, counterpropagation      663 683 686—690
Machine learning, covering a concept      613
Machine learning, credit assignment      623 (see also “Bucket brigade algorithm”)
Machine learning, decision trees      624—633 636
Machine learning, discovery      649—650
Machine learning, emergent computation      713—749
Machine learning, empiricist’s dilemma      771 773—775
Machine learning, EURISKO      650
Machine learning, evolutionary learning      see “Genetic learning”
Machine learning, explanation-based      605—606 638—646
Machine learning, generalization      607—615 620—621 642—643 771
Machine learning, genetic learning      604
Machine learning, Grossberg learning      686—690
Machine learning, Hebbian learning      688—696
Machine learning, heuristics      607 619—624 634—636 645
Machine learning, hill climbing      675
Machine learning, Hopfield nets      701 706—711
Machine learning, ID3      26 249 547—548 605 619 624—636 650 680
Machine learning, IL      650
Machine learning, induction      603—633 771—775
Machine learning, inductive bias      604—605 624 633—639 662 772—773
Machine learning, information theoretic selection      628—631
Machine learning, knowledge-level learning      645
Machine learning, Kohonen networks      684—689
Machine learning, learnability      633—638
Machine learning, learning search heuristics      619—623
Machine learning, LEX      619—623 635 644
Machine learning, meta-DENDRAL      26 199 639—640 773
Machine learning, near miss      608—610
Machine learning, negative instances and overgeneralization      615—616
Machine learning, neural networks      see “Connectionist models of intelligence”
Machine learning, operationally criteria      641
Machine learning, overgeneralization      615—616
Machine learning, PAC learning      638
Machine learning, performance evaluation      623—624 632—633 680 721—725
Machine learning, similarity-based learning      605 638
Machine learning, specialization      608—615
Machine learning, speed-up learning      645
Machine learning, supervised Hebbian learning      694—696
Machine learning, supervised learning      605 613 694—696
Machine learning, symbol-based      603—660
Machine learning, taxonomic learning      651—658
Machine learning, top-down decision tree induction      627—628
Machine learning, unsupervised Hebbian learning      691—694
Machine learning, unsupervised learning      605 649—658 691—694
Machine learning, version space search      605 612—624
Machine learning, winner-take-all learning      682—690
Machtey, M.      34
MacLennan, B.J.      30
Macro operator      193—196
Macsyma      111—113
Maes, P.      748
Magerman, D.      549
Maier, D.      421
Malpas, J.      391 422
Manna, Z.      79
Marcus, M.      23
Markov algorithm      172
Markov chains      522
Markov models      545—546
Markov, A.      172
Martins, J.      278—279 281 290
Masterman, M.      301 304
Matisse, H.      517
McAllester, D.A.      278 281 290
McCarthy, J.      62 187 274—275 290—291 334 351
McCartney, P.      312 339
McCelland, J.L.      673
McCord, M.      422
McCorduck, P.      603
McCulloch, W.S.      662 664 711
McCulloch-Pitts neuron      662—666
McDermott, D.      121 199 271—272 289
McDermott, J.      36 174 208 215
McGraw, K.L.      245
Mead, C.      712
Means-ends analysis      204 560—566 757 766—767
Mellish, C.      350 358 421
Mercer, R.      550
Merleau-Ponty, M.      14
Meta-classes      505
Meta-DENDRAL      26 199 639—640 773
Meta-interpreters      357—358 389—391 397—415 469—472
Meta-knowledge      180
Meta-linguistic abstraction      398 472
Meta-planning      199
Metaphor      520
Mgu      see “Most general unifier”
Michalewicz      747
Michalski, R.      30 652 658 730
Micro-world      22
Milner.R.      775
Milton, J.      4
Mind-body problem      6—7 30
minimax      127 144—152 156—157
Minimax to fixed ply depth      147—150
Minimum distance classification      669
Minimum models      273—275
Minsky, M.      30 320 323—324 666—667 761 770
Minton, S.      640
Mitchell, M.      30 692 715 724 733 743—748
Mitchell, T.      26 612 619 639—641 643—644
Mithen.S.      762—763
Mockler, R.J.      245
Modal logics      334
Model      65—67
Model-based reasoning      206 230—235 243
Modular theories of mind      763
modus ponens      5 65—68 77—78 81 164—165 561 567 593 596
Modus tolens      66—67 80
Monotonicity      127 139 141—142 156 758
Monte Carlo replacement algorithms      716
Mooney, R.      283 640 643
Moore, J.S.      19 30 600
Moore, O.K.      562
Moore, R.C.      272 290 334
MOPS      308 328
Morignot, P.      748
Morphology      522 535
Morrison, E.      7
Morrison, P.      7
Most general unifier      70
Multi-value logics      334 360
Multiple belief reasoner      281
multiple inheritance      329 503—505
Mutation      717—718 721 727—733 736
Mutual information clustering      547—548
MYCIN      20—21 199 209 211—212 230 249 263—266 289 296
Mycroft, A.      391 393 422
Mylopoulos, J.      294
n-move look ahead      147
Nash-Webber, B.L.      304
Natural deduction      560 599—600
Natural language understanding      17 22—23 28 30 34 45 116—121 301—306 350 417—421 517—557
Natural language understanding and databases      523 551—555
Natural language understanding, applications      550—555
Natural language understanding, augmentations of logic grammars      534
Natural language understanding, augmented phrase structure grammars      534 555
Natural language understanding, augmented transition networks      528 533—538 556
Natural language understanding, bottom-up parsing      526
Natural language understanding, CART trees      546—547
Natural language understanding, case frame      540
Natural language understanding, case-grammars      555
Natural language understanding, Chomsky hierarchy      531—533 556
Natural language understanding, combining syntax and semantics      534—542
Natural language understanding, context-free grammars      524—528 531—533
Natural language understanding, context-sensitive grammars      532—533
Natural language understanding, deep structure      555
Natural language understanding, generation      527 542
Natural language understanding, grammar      116—121 524—528 532—534 555
Natural language understanding, grammatical markers      555
Natural language understanding, link grammars      550
Natural language understanding, Markov chains      522
Natural language understanding, Markov models      545—546
Natural language understanding, metaphor      556
Natural language understanding, morphology      522 535
Natural language understanding, mutual information clustering      547—548
Natural language understanding, parse tree      118—119 525—526 537—538
Natural language understanding, parsing      22 116—121 417—421 520 523—531 543—550
Natural language understanding, phonology      522
Natural language understanding, phrase structure      526
Natural language understanding, pragmatics      522 556
Natural language understanding, prosody      522
Natural language understanding, recursive descent parsing      526
Natural language understanding, semantic grammars      555
Natural language understanding, semantic interpretation      523—524
Natural language understanding, sentential form      525
Natural language understanding, SHRDLU      22 521
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå