Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Luger G.F., Stubblefield W.A. — Artificial Intelligence: Structures and Strategies for Complex Problem Solving
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Artificial Intelligence: Structures and Strategies for Complex Problem Solving
Àâòîðû: Luger G.F., Stubblefield W.A.
Àííîòàöèÿ: Combines the theoretical foundations of intelligent problem-solving with he data structures and algorithms needed for its implementation. The book presents logic, rule, object and agent-based architectures, along with example programs written in LISP and PROLOG. The practical applications of AI have been kept within the context of its broader goal: understanding the patterns of intelligence as it operates in this world of uncertainty, complexity and change.
The introductory and concluding chapters take a new look at the potentials and challenges facing artificial intelligence and cognitive science. An extended treatment of knowledge-based problem-solving is given including model-based and case-based reasoning. Includes new material on: Fundamentals of search, inference and knowledge representation AI algorithms and data structures in LISP and PROLOG Production systems, blackboards, and meta-interpreters including planers, rule-based reasoners, and inheritance systems. Machine-learning including ID3 with bagging and boosting, explanation basedlearning, PAC learning, and other forms of induction Neural networks, including perceptrons, back propogation, Kohonen networks, Hopfield networks, Grossberg learning, and counterpropagation. Emergent and social methods of learning and adaptation, including genetic algorithms, genetic programming and artificial life. Object and agent-based problem solving and other forms of advanced knowledge representation.
ßçûê:
Ðóáðèêà: Computer science /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: third edition
Ãîä èçäàíèÿ: 1998
Êîëè÷åñòâî ñòðàíèö: 824
Äîáàâëåíà â êàòàëîã: 10.03.2006
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
LISP functions, cons 439
LISP functions, declare 481
LISP functions, defclass 499—501
LISP functions, defgeneric 501—503
LISP functions, defmethod 503
LISP functions, defun 432—433
LISP functions, eq 452
LISP functions, equal 439
LISP functions, eval 430—431 456—457
LISP functions, funcall 456—457
LISP functions, gensym 480—481
LISP functions, get 495
LISP functions, if 435
LISP functions, length 429
LISP functions, let 446—448
LISP functions, list 429
LISP functions, listp 448
LISP functions, mapcar 457—458
LISP functions, member 429 434—435 460
LISP functions, minusp 434
LISP functions, nth 428—429
LISP functions, null 429 448
LISP functions, numberp 434
LISP functions, oddp 434—435
LISP functions, or 435
LISP functions, plusp 434
LISP functions, print 435—436
LISP functions, quote 430—431
LISP functions, read 470
LISP functions, remprop 496
LISP functions, set 444
LISP functions, setf 444 446 495
LISP functions, terpri 470
LISP functions, zerop 434
LISP, a-list 467—469
LISP, applying functions 428
LISP, association lists 461—469
LISP, atom 426
LISP, best-first search 462—463
LISP, binding 428
LISP, binding variables 444—446
LISP, bound variable 444—456
LISP, breadth-first search 459—461
LISP, car/cdr recursion 441—443
LISP, class precedence list 503—505
LISP, CLOS 347 497—511
LISP, Common Lisp Object System see CLOS
LISP, conditionals 433—436
LISP, control of evaluation 430—431
LISP, data abstraction 436—438
LISP, data types 448—449
LISP, defining classes 499
LISP, defining functions 431—433
LISP, delayed evaluation 482—486
LISP, depth-first search 449—455 459—460
LISP, dotted pairs 468
LISP, evaluation 427—431
LISP, expert system shell 486—494
LISP, farmer, wolf, goat cabbage problem 449—455
LISP, filters 455—457
LISP, form 428—430
LISP, free variable 445
LISP, function closure 482—483
LISP, functional arguments 457—458
LISP, generic functions 498 501—503
LISP, higher-order functions 455—458
LISP, inheritance 497 503—505
LISP, lambda expressions 457—458
LISP, lexical closure 482—483
LISP, list defined 426—427
LISP, local variables 446—448
LISP, logic programming 472—481
LISP, maps 455—457
LISP, meta-classes 505
LISP, meta-interpreters 469—472
LISP, meta-linguistic abstraction 472
LISP, multiple inheritance 503—505
LISP, nil 427
LISP, pattern matching 463—469
LISP, predicates 433—436
LISP, procedural abstraction 455—458
LISP, program control 433—436 453—454
LISP, property list 494—497
LISP, read-eval-print loop 427 469—472
LISP, recursion 438—443
LISP, s-expression 426 429—430 731
LISP, semantic networks 494—497
LISP, simulation 505—511
LISP, slot options 499—501
LISP, slot-specifiers 499—501
LISP, special declaration 481
LISP, state-space search 449—455
LISP, streams 474—476 482—486
LISP, streams and delayed evaluation 482—486
LISP, thermostat simulation 505—511
LISP, tree-recursion 441—443
LISP, unification 463—469
Literal 567 573 589
Littman, M. 747
Lloyd, J.W. 350
Locke, J. 603 778
Logic 5 7—10 13—15 19 33 37—41 46—84 90 107—120 160 164—170 179 183—184 188—196 294 297—298 318—320 343 350 358—361 427 560 566—589 593 607—608 758—759 “First-order “Automated
Logic programming 347 350 472—481 587—593
Logic programming in LISP 472—481
Logic Theorist 203 560—562
Logical inference 107—108
Logically follows 64—66
LOGO 215 352
Long-term memory 173
Lovelace, A. 7—8 12 17
Loveland, D.W. 600
lt see “Logic Theorist”
Lucas, R. 421
Luger, G.F. 23 30 174 198—199 217 235—237 239 246 335 562 768—769 776 780
Maass, W. 659
Machine learning 16—17 21 25 28 30 41 43 45 237 351 517—518 520 603—712 760 770—775
Machine learning, AM 25 649—650
Machine learning, analogical 607 646—649
Machine learning, autoassociative memory 696—711
Machine learning, BACON 650
Machine learning, bidirectional associative memory 702—706
Machine learning, candidate elimination algorithm 613—620
Machine learning, category formation 605
Machine learning, classification 668 672
Machine learning, CLUSTER/2 605 635 652—653 684
Machine learning, COBWEB 605 653—658 684
Machine learning, competitive learning 662 682—690
Machine learning, concept learning 605
Machine learning, concept space 606 608
Machine learning, conceptual clustering 605—606 651—653
Machine learning, conjunctive bias 636
Machine learning, connectionist 603—604 661—712
Machine learning, counterpropagation 663 683 686—690
Machine learning, covering a concept 613
Machine learning, credit assignment 623 (see also “Bucket brigade algorithm”)
Machine learning, decision trees 624—633 636
Machine learning, discovery 649—650
Machine learning, emergent computation 713—749
Machine learning, empiricist’s dilemma 771 773—775
Machine learning, EURISKO 650
Machine learning, evolutionary learning see “Genetic learning”
Machine learning, explanation-based 605—606 638—646
Machine learning, generalization 607—615 620—621 642—643 771
Machine learning, genetic learning 604
Machine learning, Grossberg learning 686—690
Machine learning, Hebbian learning 688—696
Machine learning, heuristics 607 619—624 634—636 645
Machine learning, hill climbing 675
Machine learning, Hopfield nets 701 706—711
Machine learning, ID3 26 249 547—548 605 619 624—636 650 680
Machine learning, IL 650
Machine learning, induction 603—633 771—775
Machine learning, inductive bias 604—605 624 633—639 662 772—773
Machine learning, information theoretic selection 628—631
Machine learning, knowledge-level learning 645
Machine learning, Kohonen networks 684—689
Machine learning, learnability 633—638
Machine learning, learning search heuristics 619—623
Machine learning, LEX 619—623 635 644
Machine learning, meta-DENDRAL 26 199 639—640 773
Machine learning, near miss 608—610
Machine learning, negative instances and overgeneralization 615—616
Machine learning, neural networks see “Connectionist models of intelligence”
Machine learning, operationally criteria 641
Machine learning, overgeneralization 615—616
Machine learning, PAC learning 638
Machine learning, performance evaluation 623—624 632—633 680 721—725
Machine learning, similarity-based learning 605 638
Machine learning, specialization 608—615
Machine learning, speed-up learning 645
Machine learning, supervised Hebbian learning 694—696
Machine learning, supervised learning 605 613 694—696
Machine learning, symbol-based 603—660
Machine learning, taxonomic learning 651—658
Machine learning, top-down decision tree induction 627—628
Machine learning, unsupervised Hebbian learning 691—694
Machine learning, unsupervised learning 605 649—658 691—694
Machine learning, version space search 605 612—624
Machine learning, winner-take-all learning 682—690
Machtey, M. 34
MacLennan, B.J. 30
Macro operator 193—196
Macsyma 111—113
Maes, P. 748
Magerman, D. 549
Maier, D. 421
Malpas, J. 391 422
Manna, Z. 79
Marcus, M. 23
Markov algorithm 172
Markov chains 522
Markov models 545—546
Markov, A. 172
Martins, J. 278—279 281 290
Masterman, M. 301 304
Matisse, H. 517
McAllester, D.A. 278 281 290
McCarthy, J. 62 187 274—275 290—291 334 351
McCartney, P. 312 339
McCelland, J.L. 673
McCord, M. 422
McCorduck, P. 603
McCulloch, W.S. 662 664 711
McCulloch-Pitts neuron 662—666
McDermott, D. 121 199 271—272 289
McDermott, J. 36 174 208 215
McGraw, K.L. 245
Mead, C. 712
Means-ends analysis 204 560—566 757 766—767
Mellish, C. 350 358 421
Mercer, R. 550
Merleau-Ponty, M. 14
Meta-classes 505
Meta-DENDRAL 26 199 639—640 773
Meta-interpreters 357—358 389—391 397—415 469—472
Meta-knowledge 180
Meta-linguistic abstraction 398 472
Meta-planning 199
Metaphor 520
Mgu see “Most general unifier”
Michalewicz 747
Michalski, R. 30 652 658 730
Micro-world 22
Milner.R. 775
Milton, J. 4
Mind-body problem 6—7 30
minimax 127 144—152 156—157
Minimax to fixed ply depth 147—150
Minimum distance classification 669
Minimum models 273—275
Minsky, M. 30 320 323—324 666—667 761 770
Minton, S. 640
Mitchell, M. 30 692 715 724 733 743—748
Mitchell, T. 26 612 619 639—641 643—644
Mithen.S. 762—763
Mockler, R.J. 245
Modal logics 334
Model 65—67
Model-based reasoning 206 230—235 243
Modular theories of mind 763
modus ponens 5 65—68 77—78 81 164—165 561 567 593 596
Modus tolens 66—67 80
Monotonicity 127 139 141—142 156 758
Monte Carlo replacement algorithms 716
Mooney, R. 283 640 643
Moore, J.S. 19 30 600
Moore, O.K. 562
Moore, R.C. 272 290 334
MOPS 308 328
Morignot, P. 748
Morphology 522 535
Morrison, E. 7
Morrison, P. 7
Most general unifier 70
Multi-value logics 334 360
Multiple belief reasoner 281
multiple inheritance 329 503—505
Mutation 717—718 721 727—733 736
Mutual information clustering 547—548
MYCIN 20—21 199 209 211—212 230 249 263—266 289 296
Mycroft, A. 391 393 422
Mylopoulos, J. 294
n-move look ahead 147
Nash-Webber, B.L. 304
Natural deduction 560 599—600
Natural language understanding 17 22—23 28 30 34 45 116—121 301—306 350 417—421 517—557
Natural language understanding and databases 523 551—555
Natural language understanding, applications 550—555
Natural language understanding, augmentations of logic grammars 534
Natural language understanding, augmented phrase structure grammars 534 555
Natural language understanding, augmented transition networks 528 533—538 556
Natural language understanding, bottom-up parsing 526
Natural language understanding, CART trees 546—547
Natural language understanding, case frame 540
Natural language understanding, case-grammars 555
Natural language understanding, Chomsky hierarchy 531—533 556
Natural language understanding, combining syntax and semantics 534—542
Natural language understanding, context-free grammars 524—528 531—533
Natural language understanding, context-sensitive grammars 532—533
Natural language understanding, deep structure 555
Natural language understanding, generation 527 542
Natural language understanding, grammar 116—121 524—528 532—534 555
Natural language understanding, grammatical markers 555
Natural language understanding, link grammars 550
Natural language understanding, Markov chains 522
Natural language understanding, Markov models 545—546
Natural language understanding, metaphor 556
Natural language understanding, morphology 522 535
Natural language understanding, mutual information clustering 547—548
Natural language understanding, parse tree 118—119 525—526 537—538
Natural language understanding, parsing 22 116—121 417—421 520 523—531 543—550
Natural language understanding, phonology 522
Natural language understanding, phrase structure 526
Natural language understanding, pragmatics 522 556
Natural language understanding, prosody 522
Natural language understanding, recursive descent parsing 526
Natural language understanding, semantic grammars 555
Natural language understanding, semantic interpretation 523—524
Natural language understanding, sentential form 525
Natural language understanding, SHRDLU 22 521
Ðåêëàìà