Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Carus P. — The Foundations of Mathematics. A Contribution to the Philosophy of Geometry
Carus P. — The Foundations of Mathematics. A Contribution to the Philosophy of Geometry



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Foundations of Mathematics. A Contribution to the Philosophy of Geometry

Автор: Carus P.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1908

Количество страниц: 141

Добавлена в каталог: 25.03.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
A posteriori      43 60
A priori      38 64
A priori and the purely formal      4
A usdehnungslehre, Grassmann’s      28
Absolute, the      25
Anschauung      82 97
Anyness      46
Anyness, Space founded on      60
Apollonius      31
Apparent arbitrariness of is ideal      44
Apparent arbitrariness of the      96
Apparent arbitrariness of the constructions      112
Apparent arbitrariness of the constructions verified by experience      122
Apparent arbitrariness of the constructions, Geometries are      127
Apparent arbitrariness of the logical      54
Apparent arbitrariness of the purely      55
Apparent arbitrariness of the rigidly      54 55
Apparent arbitrariness of, Source of the      51
Apriority of different degrees      49ff
Apriority of mathematical space      121 129
Apriority, Problem of      36
Archimedes      31
Astral geometry      15
Atomic fiction      81
Ball, Sir Robert, on the nature of space      23ff
bernoulli      9
Bessel, Letter of Gauss to,      21ff
Billingsley, Sir H.      82
Bolyai, Janos      22ff 98
Bolyai, translated      27
Boundaries      78 129
Boundaries, produced by halving, Even      85 86
Boundary concepts, Utility of      74
Bridges of Konigsberg      20ff
Busch, Wilhelm      115
Carus, Paul, Fundamental Problems      3
Carus, Paul, Fundamental Problems; Kants Prolegomena      39 122
Carus, Paul, Fundamental Problems; Primer of Philosophy      41.
Causation and transformation      54
Causation, a priori      53
Causation, Kant on      40
Cayley      25
Chessboard, Problem of      101
Circle, squaring of the      104
Circle, the simplest curve      75
Classification      79
Clifford      16 32 60
Clifford, Plane constructed by      69
Common notions      2 4 128
Comte      38
Concreteness, Purely formal, absence of      60
Continuum      78ff
Curved space      106
de Morgan, Augustus      10
Definitions of Euclid      1 128
Delboeuf, B. J.      27
Determinism in mathematics      104
Dimension, definition of      85
Dimensions, Space of four      9 off.
Directions of space, Infinite      117
Discrete units      78ff
Dual number      89
Edward’s Dream      115
Egg-shaped body      33f
Elliptic geometry      25
Empiricism, Transcendentalism and      38ff
Engel, Friedrich      26
Euclid      43
Euclidean geometry, classical      31 121
Even boundaries      122
Even boundaries as standards of measurement      69 85 86
Even boundaries, produced by halving      85 86
Experience, Physiological space originates through      65
Expositionsof, rearranged      128
Faust      133
Fictitious spaces      19ff
Flatland      115
FORM      60 133
Form and reason      48
Four dimensions      109
Four-dimensional space and tridimensional beings      93
Fourth dimension      25
Fourth dimension, illustrated by mirrors      93
Geometrical construction, Definiteness of      99ff
Geometries, a priori constructions      127
God, Conception of      136
Grassmann      27
Halsted on      31
Halsted, George Bruce      4 23 26 27 2811 101
Halsted, George Bruce on Euclid      3
Helmholtz      26 83
Helmholtz on      113
Helmholtz on curved space      113
Helmholtz on two-dimensional beings      11
Hilbert’s use of “axiom”      128
Homaloidal      18 74
Homogeneity of space      66ff
Hypatia      31
Infinite directions of space      117
Infinite directions of space, division of line      117
Infinite directions of space, Infinitude      61ff
Infinite directions of space, not mysterious      118
Infinite directions of space, Space is      116 126
Infinite directions of space, Time is      116
Infinite, division of      117
Infinite, Shortest      84
Infinite, Straightest      75 127
Kant      35 40 61 84
Kant and the a priori      36 38
Kant his identification of “ideal” and “subjective”      44ff
Kant his term Anschauung      32 97
Kant his use of “transcendental”      41
Kant’s Prolegomena      39
Keyser, Cassius Jackson      77
Kinematoscope      80
Klein, Felix      25
Konigsberg, Seven bridges of      102ff
Lambert, Johann Heinrich      19
Laws of nature      132
legendre      11
Line created by construction      83
Line created by construction, independent of position      62
LITTRE      38
Lobatchevsky      10 2
Lobatchevsky, translated      27
Lobatchevsky’s Theory of Parallels      101
Logic is static      53
Mach, Ernst      27 65
Mathematical space      63ff 67 109
Mathematical space, Apriority of      121 129
Mathematical space, priori      65
Mathematics and      82ff
Mathematics, Analogy of, to religion      134
Mathematics, Determinism in      104
Mathematics, Reality of      77
Mathematics, Teaching of      27ff
Measurement of star parallaxes      125
Measurement, Even boundaries as standards of      69
Measurement, Standards for      74
Mental activity, First rule of      79
Metageometry, History of      26
Mill, John Stuart      38
Mind develops through uniformities      52
Mirrors, Fourth dimension illustrated by      93
Monist      4 27 125
Names, Same, for parts of figures      130
Nasir eddin      7
Nature      16
Nature a continuum      78
Newcomb, Simon      25
Open Court      2
Order in life and arithmetic      80
Pangeometry      22
Pappus      31
Parallel lines in spherical space      84
Parallel lines in spherical space, theorem      4
Parallels, Axiom of      3
Path of highest intensity a straight line      58
Peirce, Charles S., on the nature of space      123
Physiological space      63
Physiological space, originates through experience      65
Plane, a zero of curvature      82
Plane, constructed by Clifford      69
Plane, created by construction      83
Plane, Nature of      73
Plane, Significance of      129
Plato      135
Plutarch      135
Poincare, H.      27
Point congruent with itself      71
Population of Great Britain determined      29f
POSITION      62
Postulates      2 128
Potentiality      63
Proclus      4 31
Pseudo-spheres      83
Pure form      63
Pure form space, Uniqueness of      61
Purely a priori, The formal, absence of concreteness      60
Question in geometry      72 73 121
Ray a final boundary      58
Reason, Form and      48
Reason, Nature of      76
Rectangular pentagon      98
Religion, Analogy of mathematics to      134
Riemann      15
Right angle created by construction      83
Right angle created by construction, Nature of      73
Right angle created by construction, Significance of      129
Russell on non-Euclidean geometry      119
Russell, Bertrand A.V.      26
Saccheri, Girolamo      8f
Schlegel, Victor      30
Schoute, P. H.      3
Schumaker, Letter of Gauss to, n.Schweikart      15
Sense-experience and space      122
Shortest line      84
significance of      129
Significance of possible      74
Space, a manifold      108
Space, a spread of motion      56
Space, Apriority of mathematical      121 129
Space, curved      126
Space, founded on “anyness      60
Space, Helmholtz on curved      113
Space, Homogeneity of      66
Space, Infinite directions of      117
Space, Mathematical      63ff 67 109
Space, Mathematical and actual      62
Space-conception, how far a priorif      59ff
Space-conception, product of pure activity      55
Space-measurement, Apriority of      109
Spaces, Fictitious      109
Squaring of the circle      104
Stackel, Paul      26
Standards of measurement      74
Standards of measurement, boundaries as      69
Star parallaxes, Measurements of      125
Straight line      69 71 112 122
Straight line a path of highest intensity      59
Straight line does not exist      72
Straight line indispensable      72
Straight line, created by construction      83
Straightest line      75 127
Subjective and ideal, Kant’s identification of      44f
Subjective and ideal, not synonyms      64
Superreal, The      76
Taurinus, Letter of Gauss to      63f
Teaching of mathematics      127
Tentamen      23
Theory of Parallels, Lobatchevsky’s      101
Thought-forms, systems of reference      61
Three, The number      88f
Time is infinite      116
Tlieon      31 32
Transcendentalism and Empiricism      35 38ff
Transformation, Causation and      54
Tridimensional beings, Four-dimensional space and      93
Tridimensionality      84
Trinity, Doctrine of the      89
Two-dimensional beings and tridimensional space      91
Units, Discrete      78
Various systems of      104
Wallis, John      71f
WHY      100
Zamberti      32
Ziwet, Professor      135
“Axiom”, Euclid avoided      1 127
“Axiom”, Hilbert’s use of      128
“Ideal” and “subjective,” Kant’s identification of      44ff
“Ideal” and “subjective,” not synonyms      64
“Transcendental”, Kant’s use of      41
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте