Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Posamentier A.S. — The Fabulous Fibonacci Numbers
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: The Fabulous Fibonacci Numbers
Àâòîð: Posamentier A.S.
Àííîòàöèÿ: The most ubiquitous, and perhaps the most intriguing, number pattern in mathematics is the Fibonacci sequence. In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature—from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world.
With admirable clarity, math educators Alfred Posamentier and Ingmar Lehmann take us on a fascinating tour of the many ramifications of the Fibonacci numbers. The authors begin with a brief history of their distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal’s triangle, to name a few. Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2007
Êîëè÷åñòâî ñòðàíèö: 385
Äîáàâëåíà â êàòàëîã: 22.10.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
"Bigollo" see "Fibonacci Leonardo"
"Book of Squares" see "Liber quadratorum (Fibonacci)"
"Book on calculation" see "Liber Abaci (Fibonacci)"
"Cartesian plane" 131
"divine proportion" 245
"Dow theory" of investing 178
"Equiangular spiral" 131
"factors of a multiplication" 23
"factors of a number" 23
"Nest of radicals" 173
"Pascaline" (calculator) 84
"Periodicity" 14 14n3 30 108n1 350
"Periodicity", periodic decimals 112n6
"queen of science," mathematics as 328
"Sign of the Devil, The" (Wang) 213
"Valuable Mirror of the Four Elements, The" (Khayyam) 84n2
"Vitruvian" man 257
"wave theory" of investing 178—193
see "Golden ratio (section)"
119—120 165—166 166n5 237
0 (the number) 37 50 111 205—206
11 (the number), Fibonacci numbers divisible by 33 331 350—351
12 (the number), Fibonacci numbers divisible by 331
144 (the number) 208 217 328
2 (the number), Fibonacci numbers divisible by 47 210 330
2 (the number), power of 196 196n9
20 Steps around Globe (created by Niemeyer) 249—252 250n21
3 (the number), Fibonacci numbers divisible by 47 210 330—331
3 (the number), rule for divisibility by 47n24
39th Mersenne prime number 69 69n7
4 (the number), Fibonacci numbers divisible by 330—331
4 (the number), relationship to 89 213n19
5 (the number), Fibonacci numbers divisible by 47
6 (the number), Fibonacci numbers divisible by 331
666 (the number) 212—213
8 (the number), Fibonacci numbers divisible by 48 331
89 (the number) 213—217 213n19 365—366
abacus 12 19n3
Acropolis (Athens) 232 234
Adam and Eve (Duerer) 15 268
Adam and Eve (Raimondi) 268
Al-Khowarizmi 19
Algebra 12 19—20 19n2
Algebraic number 165n2
Algorithms 12 198 198n10 310
Algorithms and ancient Egyptians 195n8
Algorithms, multiplication algorithm and Fibonacci numbers 195—199
Alternating numbers 42 42n23 44—45 54 54n25 55 142
Altevogt, Rudolf 76
American Library Association 211n16
Angle and fractals 311 313 314
Angle and isosceles triangles 144
Angle and pentagons 151 157
Angle and right triangles 128 134 135
Angle, angle sum of a triangle 84
Angle, bisectors 123 145 146 362
Angle, divergence angle 64n3
Angle, golden angle 64 64n3 74 148—149 250 250n20
Angle, used in watch displays 217—220 220n21
Angle, vertex angle 144 147
Animali da 1 a 55 (Merz) 252
Antennas (in fractals) 322—325
Aphrodite of Melos (statue) 246—247
Apollo Belvedere (statue) 245—246
Arabic numerals see "Hindu numerals"
Architecture, Fibonacci numbers in 232—244
Arte povera 252
Arts and Fibonacci numbers 231—269
Babbitt, Milton 288
Babylonian formulae 193
Bach, Johann Sebastian 286
Baptism of Christ, The (Piero della Francesca) 268
Bar over digits, meaning of 14 14n3 30 108n1
Barbara, Saint 260—261
Baroque period 277 286
Bartok, Bela 285—288
Base-sixty numbering system 21 21n6
Base-ten numbering system 11
Base-two numbering system 198
Bathers at Asneres (Seurat) 263
Bear markets 179 182
Bees, male 13 59—61
Beethoven, Ludwig van 280—282
Beothy, Etienne 247—248
Bernoulli family 296n3
Bernoulli, Daniel 296
Bernoulli, Jacob 131—132
Bernoulli, Nicolaus, I 296
Bijugate spirals 69n8
Binary forms of music 274—275 277
Binary numbering system 198
Binet formula 207
Binet formula for finding a particular Fibonacci number 293—301 328 366—368
Binet formula for finding a particular Lucas number 301—302
Binet, Jacques-Philippe-Marie 28 293—294 296
Binomial coefficient 88n3
Binomial expansion 87—88 88n3
Binomial theorem 356
Birth of Venus, The (Botticelli) 259
Bisectors of an angle 123 145 146 362
Bizet, George 11
Bonacci, Guilielmo (William) 17—18
Bonacci, son of see "Fibonacci Leonardo"
Boncompagni, Baldassarre 19n4
Borgliese, Pietro See "Piero della Francesca"
Botticelli, Sandro 259
Boulez, Pierre 288
Bracts, counting of 13 27 63—64 65—66
Braun, A. 27
Brouseau, Alfred 65
Bruch, Hellmut 254—255
Brunelleschi, Filippo 239
Bulbs (in fractals) 322—325
Bull markets 179
Bury, Claus 255—256
Business applications of Fibonacci numbers 177—183
Cage, John 290
Calculator or computer used to find a Fibonacci number 303—304 368—369
Cantor, Georg 308
Cardiods (in fractals) 322—325 322n7
Carmen (Bizet) 11
Cassai, Tommaso see "Masaccio"
Cathedral of Chartres (France) 237—238
Center for International Light Art (Germany) 253—254
Checkerboard, covering a 188—191
Cheops (Khufu) Pyramid (Giza) see "Great Pyramid (Giza)"
Chinese remainder theorem 24
Chopin, Frederic 272—274
Chords of a circle 124 124n14
Chromatic scale 286
Chu Shih-Chieh 84n2
Circles and constructing a pentagon 156—158
Circles, chords of 124 124n14
Circles, concentric circles 133
Circles, congruent circles 139—140
Circles, great circle 250 250n19
Circles, sequence of 80—81 84 87
Circles, used to construct golden ratio 121—122 124 360—361
Circus Parade (Seurat) 263
Claus, M. see "Lucas Francois-Edouard-Anatole
Coda in music 281 281n4
Codetta in music 281
Coins and vending machines 183—184
Collins, Charles 178 179
Cologne (Germany) 255—256
Columbia University, School of Library, Economy 211n16
Common differences 64 78 82 330 331 364
Common factors 33—34 33n20 94 192 192n5 351—352 see
Common fractions 20n5 24n12 30
complex numbers 120 320
Complex plane 320 320n5
Composite numbers 35 35n21 53—54 352—353
Composition with Colored Areas and Gray Lines I (Mondrian) 269n36
Composition with Gray and Light Brown (Mondrian) 269n36
Composition with Red Yellow Blue (Mondrian) 269n36
Compound interest 24
Computer or calculator used to find a Fibonacci number 303—304 368—370
Computers and music 289
Concentric circles 133
Congruent circles 139—140
Consecutive numbers 43—44 55 56
Consecutive numbers, four consecutive Fibonacci numbers 211
Consecutive numbers, odd numbers 295
Consecutive numbers, ratios of 109—110 210
Construction, constructing a pentagon 155—158
Construction, constructing fractals 310—317
Construction, constructing the golden ratio 120—124 362—365
Continued fractions and Fibonacci numbers 161—175 162n1
Continued fractions and Fibonacci numbers, finite continued fractions 163
Continued fractions and Fibonacci numbers, golden ratio as a continued fraction 166—172
Continued fractions and Fibonacci numbers, infinite continued fractions 163—164
Cook, Theodore Andrea 245
Corrective waves 178 179
Cossali, Pietro 17n1
Couder, Yves 74
Credit cards, measurements of 182
Crucifixion (Raphael) 268
Crystallography 342
Cubits (as a measurement) 236
CURVES 72 131 132—133 247 308 322
Curves of Life, The (Cook) 245
Curves, Gaussian curve 246 246n13
Dali, Salvador 268
Davis, T. Antony 76
De divina proportione (Pacioli) 245 257 260
De Moivre, Abraham 296
Decimal expansion 108n2
Denominator 23
Deposition from the Cross (Weyden) 268
Der goldene Schnitt (sculpture by Ulrichs) 248—249
Der goldene Schnitt (Zeising) 115 115n8
Der goldene Schnitt. Ein Harmoniege-setz und seine Anwendung (Hagenmaier) 248
Descartes, Rene 131
Devaney, Robert 319 319n4
Development in music 276 280 281 286
Devil, sign of 212 213
Dewey Decimal classification system 211 211n16 271n1
Dewey, Melvil 211n16 271n1
di Bondone, Giotto see "Giotto (di Bondone)"
di Gherardo, Giovanni (da Prato) 239
Di minor guisa (Fibonacci) 20
Diagonal of the golden rectangle 138—139
Diatonic scales 272
Differences and sum of successive powers 297—298
Differences in Lucas numbers 301
Differences, common differences 64 78 82 330 331 364
Differences, Fibonacci differences 78—80 82 83 95n9
Differences, pattern in differences of squares 43—44 45—46 54 55 357 364
Differences, sequences of progressive differences 102
Differences, sum and difference 296—298
DIGITS see "Integers" "Numbers"
Digits, curiosity of 208
Digits, first-digit patterns 207—208
Digits, last-digit patterns 206—207
Dionysius' Procession (relief at Villa Albani) 267
Distances, conversion of measures of 200—203
Divergence angle 64n3
Division, common divisor 337
Division, denominator 23
Division, divisibility of Fibonacci numbers 47—48 55—56 330 341 350 358
Division, divisors of composite numbers 353
Division, numerator 23
Division, sequences of remainders 31—32
dodecahedron 231
Dodgson, Charles Lutwidge 140
Dominant in music 285 285n5
Dominoes, covering a checkerboard 188—191
Dominoes, knocking down as example of mathematical induction 349—350
Door, height of 241
Douady, Stephane 74
Drones 13 59—61
Duchamp, Gaston 247 247n14
Dudley, Underwood 119
Duerer, Albrecht 15 155 158 258—259 259n26 268
Dyad in music 285 285n7
Dynamic symmetry 245 245n10
e see "Euler's number"
Egyptian pyramids 180 234—237
Elements (Euclid) 20 171
Elements of Dynamic Symmetry, The (Hambidge) 245
Elliott, Ralph Nelson 177 178—183
Ellipse, area of 133 133n18
Empire State Building, climbing stairs of 185
Equal binary form of music 274—275 277
Equations, integer polynomial equation 165n2
Equations, linear equations 23
Equations, polynomial equation 165n2
Essor II (sculpture) 248
Euclid 12 19 20 84 171 307
Euler's number 120 165 165n2
Euler, Leonhard 120 165n2 296
Even-positioned Fibonacci numbers 47 210 330
Even-positioned Fibonacci numbers, sum of 37—38 54 353
Event seating and Fibonacci numbers 221—222
Evolution: Progression and Symmetry III (Mields) 266—267
Evolution: Progression and Symmetry IV (Mields) 266—267
Expansion, binomial 87—88 88n3
Exposition in music 280
Factors, common 33—34 33n20 192 192n5 351—352
Fatou, Pierre 308
Fechner, Gustav 115—117
Feet (as a measurement) 241 241n4
Feininger, Lyonel 268
Fibonacci Applications and Strategies for Traders (Fischer) 182
Fibonacci Association 17 28 329
Fibonacci multiplication algorithm 198—199
Fibonacci Napoli (Merz) 252
Fibonacci nim 225—226
Fibonacci numbers, mathematical aspects see "Golden angle" "Golden "Golden "Golden
Fibonacci numbers, mathematical aspects and Lucas numbers 15 97—98 104—105 227 228—230 297—298
Fibonacci numbers, mathematical aspects and Pythagorean triples 192—194
Fibonacci numbers, mathematical aspects and the Pascal triangle 90—98 99 102 103 104—105
Fibonacci numbers, mathematical aspects, definition of 53
Fibonacci numbers, mathematical aspects, introduction to 26—32
Fibonacci numbers, mathematical aspects, list of first 500 343—348
Fibonacci numbers, mathematical aspects, proofs of Fibonacci relationships 349—358 360—369
Fibonacci numbers, mathematical aspects, properties of 33—56 337—341
Fibonacci numbers, mathematical aspects, testing to determine if it is 304—305 305n6
Fibonacci numbers, use of, and fractals 307—325
Fibonacci numbers, use of, and painting a house 186
Fibonacci numbers, use of, and physics 203—206
Fibonacci numbers, use of, and watch displays 217—220
Fibonacci numbers, use of, business applications of 177—183
Fibonacci numbers, use of, climbing a staircase 184—185
Fibonacci numbers, use of, converting miles and kilometers 200—203
Fibonacci numbers, use of, determining path of fish in a hatchery 222—224
Fibonacci numbers, use of, determining seating at events 221—222
Fibonacci numbers, use of, in art and architecture 231—269
Fibonacci numbers, use of, in geometry 136—143
Fibonacci numbers, use of, in music 271—291
Fibonacci numbers, use of, in nature 12 13 25—27 57 59—76 132 133
Fibonacci numbers, use of, in optics 203—206
Fibonacci phyllotaxis 64n3 70—74
Fibonacci Ratios 94 107—110 180 182 see
Fibonacci spirals see "Golden spirals"
Fibonacci's Temple (Bury) 255—256
Fibonacci, Leonardo 11 17—22 23nn8—23nn9 56—57 266 327
Fifth Symphony (Beethoven) 280—282
Finding a particular Fibonacci number in a fractal 319 319n4
Finding a particular Fibonacci number, using a calculator or a computer 303—304 368—369
Ðåêëàìà