Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Posamentier A.S. — The Fabulous Fibonacci Numbers
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: The Fabulous Fibonacci Numbers
Àâòîð: Posamentier A.S.
Àííîòàöèÿ: The most ubiquitous, and perhaps the most intriguing, number pattern in mathematics is the Fibonacci sequence. In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature—from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world.
With admirable clarity, math educators Alfred Posamentier and Ingmar Lehmann take us on a fascinating tour of the many ramifications of the Fibonacci numbers. The authors begin with a brief history of their distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal’s triangle, to name a few. Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2007
Êîëè÷åñòâî ñòðàíèö: 385
Äîáàâëåíà â êàòàëîã: 22.10.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Pisa (Italy) 18 20 22
Pisa (Italy), Leaning Tower of Pisa 18 23
Pitch generator 290
Plants, Fibonacci numbers in 63—76
Plato 153
Pollio, Vitruvius 257—258 257n24
Polo, Marco 17
Polynomial equation 165n2
Poor art 252
Positive integers 55 162 217 225 331—332 333 336—337 339 363 366
Practica geometriae (Fibonacci) 19
Prato (Giovanni di Gherardo da) see "Gherardo Giovanni
Prelude No. 1 in C major (Chopin) 274
Prelude No. 9 in E major (Chopin) 273
Preludes (Chopin) 272—274
Primary bulb (in fractals) 322 324
Prime numbers 35n22 54 131 211 212 331—337
Prime numbers, Mersenne prime numbers 69 69n7
Prime numbers, odd prime numbers 208 328 333—336 337—341
Prime numbers, prime natural numbers 193
Prime numbers, relatively prime numbers 33—34 33n20 53 193 210 228 337 338 351—352
Prime numbers, special primes 336—337
Primitive numbers 339
Products of multiplication 44—47 56
Progressive differences 102
Proper fractions 161 162 173
Propylaeum temple (Greece) 234
Pyramids 180 234—237
Pythagoras and Pythagoreans 149 153 231
Pythagorean Theorem 119 119n11 134 235 360
Pythagorean theorem, using Fibonacci numbers to generate Pythagorean triples 192—194 363—365
Quadratic formula 113 117 117n10 150
Quetelet, Lambert Adolphe Jacques 75
Quotients, writing of 30n19
Rabbits, regeneration of 12 25—27 57 61
Radicals, nest of 173
Raimondi, Marcantonio 268 268n35
Raphael Santi 260—262 268
Rational numbers 24 24n12 30 163
Ratios and irrational numbers 149
Ratios, Fibonacci ratios see "Fibonacci ratios"
Ratios, golden ratio (section) see "Golden ratio (section)"
Ratios, ratio of similitude 128 128n16
Recapitulation in music 276 277 280 281
Reciprocal rectangles 128 129
Reciprocals 111 113 169 201 214 362
Recreational mathematics 24 25 27n15 94 94n7 213
Rectangles and triangles of equal area 136—137
Rectangles, created using Fibonacci numbers 40 48—49
Rectangles, created using Lucas numbers 51
Rectangles, golden rectangle 115—120 123 125—125 128—129 138—139 172 182 217—220 232—233 237 259 263
Rectangles, puzzle concerning area of 140—143
Rectangles, reciprocal rectangles 128 129
Recursive sequence 26 27 27n13 31—32 96—97 185 186 293—294 295 296 300
Recursive sequence and Lucas numbers 97 99
Recursive sequence in fractals 310 312
Reflections in glass and Fibonacci numbers 203—206
Relatively prime numbers 33—34 33n20 53 193 210 228 337 338 351—352
Remainders, sequences of 31—32
Rembrandt Harmenszoon van Rijn/nl 268
Renaissance 17 231 239 245 258 267n30
Ring, area of 133
Roger de Le Pasture see "Weyden Rogier
Roman mile (as a measurement) 200
Roman numerals 12 20
Romantic period 280 288
Rome 237
Rubic's Cube 94n7
Rule for fractals 320
Rumors, distribution of 61—62 62n2
Russian peasant's method of multiplication 195—199
Sacher, Paul 285
Salinger, J.D. 12
Santa Maria del Fiore Cathedral (Italy) 238—240
Scales in music 271—272 282—283 285nn5—285nn6 286
Schimper, C.F. 27
Schoenberg, Arnold 288—289
School of Athens, The (Raphael) 268
Scotus, Michael 20
Sculpture, Fibonacci numbers in 244—256
Seating at events and Fibonacci numbers 221—222
Second differences see "Differences"
Section d'Or (artist association) 247
Seed of the fractal 310—311 320
Self-Portrait, A (Rembrandt) 268
Sequences 80n1 see
Sequences and Fibonacci numbers 77—84 114 174—175
Sequences and Lucas numbers 174—175
Sequences and Pascal triangle 87—105
Sequences of circles 80—81 84 87
Sequences of natural numbers 241
Sequences of progressive differences 102
Sequences of remainders 31—32
Sequences, recursive sequence 27 27n13 31—32 96—97 293—294
Serusier, Paul 269
Seurat, Georges 262—263
Sexagesimal number see "Base-sixty numbering system"
Sierpinski gasket 312—313
Sierpinski, Waclaw 312n2
Sigler, Laurence E. 19n4
Signac, Paul 269
Similitude, ratio of 128 128n16
Simson, Robert 171
Singmaster, David 94
Sistine Madonna (Raphael) 260—261
Sixtus II (pope) 260—261
Snails 133
Sonata-allegro form of music 275—276 281
Sonatas as a musical form 275—280 276n2
Special integer 114
Special primes 336—337
Spiral patterns 65—74 69n8 131
Spiral patterns and pentagons 159—160
Spiral patterns, "equiangular spiral" 131
Spiral patterns, artificial Fibonacci-flower spirals 70
Spiral patterns, bijugate spirals 69n8
Spiral patterns, golden spirals 124—133 263
Spiral patterns, logarithmic spiral 127 131—132 133
Spokes (in fractals) 323
Square roots 305
Squares, created using Fibonacci numbers 40 48—49
Squares, created using Lucas numbers 51
Squaring numbers 293—296 see
Squaring numbers, alternating numbers and 44—47 55 142
Squaring numbers, pattern in differences of squares 43—44 45—46 54 55 355 364
Squaring numbers, patterns in squares of Fibonacci numbers 42 43—44 45—46
Squaring numbers, perfect square 21—22 21n7 78 305 305n6
Squaring numbers, subtracting squares of Fibonacci numbers 42—43 355—359
Squaring numbers, sum of squares of Fibonacci numbers 39—42 43 54 353—354
Squaring numbers, sum of squares of Lucas numbers 51—53 56
Squaring numbers, transforming fractals 320—321
St. Francis Preaching to the Birds (Giotto) 267
Staircases, Fibonacci numbers and climbing 184—185
Static symmetry 245
Statute mile (as a measurement) 200
Stock market and Fibonacci numbers 178—183
Stonehenge (Great Britain) 237
Stradivarius, Antonio 291
Subtracting squares of Fibonacci numbers 42—43 357—361
Successive Fibonacci numbers 209—211
Sum and difference of successive powers 297—298
Sum in Pascal triangle 85—87
Sum of even-positioned Fibonacci numbers 37—38 54 353
Sum of Fibonacci numbers and distance conversion 202 202n13
Sum of odd-positioned Fibonacci numbers 38—39 54 295 353—354
Sum, angle sum of a triangle 84
Sum, Fibonacci numbers in Pascal triangle 91—94
Sum, finding a sum by multiplying 41 52 53
Sum, formulas for getting sum of Fibonacci numbers 36—42 53 54
Sum, formulas for getting sum of Lucas numbers 49—51 56
Sum, natural numbers as sum of Fibonacci numbers 188 365
Sum, ordered sum of ones and twos 187
Sum, sequences of sums of Fibonacci numbers 82—83
Sum, sum and difference 296—298
Sum, sum of squares of Fibonacci numbers 39—42 43 54 353—354
Sum, sum of squares of Lucas numbers 51—53 56
Summand 225 225n23
Sunflowers 68—69 69n8
Swiss Guard, uniforms for 268n34
Symbol to show repetition of numbers 14 14n3 30 108n1
Symmetry 245 245n10 266 342
Symmetry, forbidden symmetry 342
Temple of Olympia 111
Test of numbers in fractals 320 321 321n6
Testing numbers to find Fibonacci numbers 304—305 305n6
Tetrahedral numbers 89 89n5 90
Thermodynamics, laws of 245n10
Thorndike, Edward Lee 117
Tonic in music 285 285n6
Tower of Hanoi puzzle 27n15
Transcendental numbers 165n2
Triangles and constructing the Grossman truss 314—319
Triangles, angle sum of a triangle 84
Triangles, Fibonacci numbers as lengths of sides 195
Triangles, golden triangle 144—148 149—154
Triangles, isosceles triangles 144—148 314
Triangles, Omar Khayyam and 84n2
Triangles, Pascal triangle 84—105
Triangles, Pythagorean triangles and Pythagorean triples 192—194
Triangular numbers 89 89n4 90 211—213 212n17
Trinity (Masaccio) 267 267n30
Triples, Pythagorean 192—194 365—367
Tristan und Isolde (Wagner) 282—285
Triumph of Galatea, The (Raphael) 268
Twelve-tone method in music 288—289
Ulrichs, Timm 248—249
Unequal binary form of music 274—275
Unit fractions 162
United Nations headquarters (New York City) 243
Unites d'habitation (France) 240
UNIVAC (computer) 289 289n8
Unna (Germany) 253—254
Untitled (Fridfinnsson) 266
Utsjoki (Niemeyer) 263—264
van der Weyden, Rogier 268 268n31
Vannucci, Pietro see "Perugino Pietro"
Variation VI (Niemeyer) 264
Vending machines and Fibonacci numbers 183—184
Venus de Milo (statue) see "Aphrodite of Melos (statue)"
Vertex angle 144 147
Villon, Jacques 247 247n14
Violin as example of golden ratio 271 291
Vitruvius 257—258
von Koch, Helge 310n1
von Webern, Anton 289
Wagner, Richard 282—285 287
Wang, Steve C. 213
Watches, displaying of 217—220
Watson Research Center, IBM 320
Wave Principle The (Elliott) 179
Worker bees 59
Zeckendorf theorem 188n4
Zeckendorf, Edouard 188n4 202n13
Zeising, Adolph 75 115 115n8 243
Zephyr (zero) 11 19 23
Zeus (statue of) 111
Ðåêëàìà