Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Posamentier A.S. — The Fabulous Fibonacci Numbers
Posamentier A.S. — The Fabulous Fibonacci Numbers



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The Fabulous Fibonacci Numbers

Àâòîð: Posamentier A.S.

Àííîòàöèÿ:

The most ubiquitous, and perhaps the most intriguing, number pattern in mathematics is the Fibonacci sequence. In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature—from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world.

With admirable clarity, math educators Alfred Posamentier and Ingmar Lehmann take us on a fascinating tour of the many ramifications of the Fibonacci numbers. The authors begin with a brief history of their distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal’s triangle, to name a few. Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2007

Êîëè÷åñòâî ñòðàíèö: 385

Äîáàâëåíà â êàòàëîã: 22.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Pisa (Italy)      18 20 22
Pisa (Italy), Leaning Tower of Pisa      18 23
Pitch generator      290
Plants, Fibonacci numbers in      63—76
Plato      153
Pollio, Vitruvius      257—258 257n24
Polo, Marco      17
Polynomial equation      165n2
Poor art      252
Positive integers      55 162 217 225 331—332 333 336—337 339 363 366
Practica geometriae (Fibonacci)      19
Prato (Giovanni di Gherardo da)      see "Gherardo Giovanni
Prelude No. 1 in C major (Chopin)      274
Prelude No. 9 in E major (Chopin)      273
Preludes (Chopin)      272—274
Primary bulb (in fractals)      322 324
Prime numbers      35n22 54 131 211 212 331—337
Prime numbers, Mersenne prime numbers      69 69n7
Prime numbers, odd prime numbers      208 328 333—336 337—341
Prime numbers, prime natural numbers      193
Prime numbers, relatively prime numbers      33—34 33n20 53 193 210 228 337 338 351—352
Prime numbers, special primes      336—337
Primitive numbers      339
Products of multiplication      44—47 56
Progressive differences      102
Proper fractions      161 162 173
Propylaeum temple (Greece)      234
Pyramids      180 234—237
Pythagoras and Pythagoreans      149 153 231
Pythagorean Theorem      119 119n11 134 235 360
Pythagorean theorem, using Fibonacci numbers to generate Pythagorean triples      192—194 363—365
Quadratic formula      113 117 117n10 150
Quetelet, Lambert Adolphe Jacques      75
Quotients, writing of      30n19
Rabbits, regeneration of      12 25—27 57 61
Radicals, nest of      173
Raimondi, Marcantonio      268 268n35
Raphael Santi      260—262 268
Rational numbers      24 24n12 30 163
Ratios and irrational numbers      149
Ratios, Fibonacci ratios      see "Fibonacci ratios"
Ratios, golden ratio (section)      see "Golden ratio (section)"
Ratios, ratio of similitude      128 128n16
Recapitulation in music      276 277 280 281
Reciprocal rectangles      128 129
Reciprocals      111 113 169 201 214 362
Recreational mathematics      24 25 27n15 94 94n7 213
Rectangles and triangles of equal area      136—137
Rectangles, created using Fibonacci numbers      40 48—49
Rectangles, created using Lucas numbers      51
Rectangles, golden rectangle      115—120 123 125—125 128—129 138—139 172 182 217—220 232—233 237 259 263
Rectangles, puzzle concerning area of      140—143
Rectangles, reciprocal rectangles      128 129
Recursive sequence      26 27 27n13 31—32 96—97 185 186 293—294 295 296 300
Recursive sequence and Lucas numbers      97 99
Recursive sequence in fractals      310 312
Reflections in glass and Fibonacci numbers      203—206
Relatively prime numbers      33—34 33n20 53 193 210 228 337 338 351—352
Remainders, sequences of      31—32
Rembrandt Harmenszoon van Rijn/nl      268
Renaissance      17 231 239 245 258 267n30
Ring, area of      133
Roger de Le Pasture      see "Weyden Rogier
Roman mile (as a measurement)      200
Roman numerals      12 20
Romantic period      280 288
Rome      237
Rubic's Cube      94n7
Rule for fractals      320
Rumors, distribution of      61—62 62n2
Russian peasant's method of multiplication      195—199
Sacher, Paul      285
Salinger, J.D.      12
Santa Maria del Fiore Cathedral (Italy)      238—240
Scales in music      271—272 282—283 285nn5—285nn6 286
Schimper, C.F.      27
Schoenberg, Arnold      288—289
School of Athens, The (Raphael)      268
Scotus, Michael      20
Sculpture, Fibonacci numbers in      244—256
Seating at events and Fibonacci numbers      221—222
Second differences      see "Differences"
Section d'Or (artist association)      247
Seed of the fractal      310—311 320
Self-Portrait, A (Rembrandt)      268
Sequences      80n1 see
Sequences and Fibonacci numbers      77—84 114 174—175
Sequences and Lucas numbers      174—175
Sequences and Pascal triangle      87—105
Sequences of circles      80—81 84 87
Sequences of natural numbers      241
Sequences of progressive differences      102
Sequences of remainders      31—32
Sequences, recursive sequence      27 27n13 31—32 96—97 293—294
Serusier, Paul      269
Seurat, Georges      262—263
Sexagesimal number      see "Base-sixty numbering system"
Sierpinski gasket      312—313
Sierpinski, Waclaw      312n2
Sigler, Laurence E.      19n4
Signac, Paul      269
Similitude, ratio of      128 128n16
Simson, Robert      171
Singmaster, David      94
Sistine Madonna (Raphael)      260—261
Sixtus II (pope)      260—261
Snails      133
Sonata-allegro form of music      275—276 281
Sonatas as a musical form      275—280 276n2
Special integer      114
Special primes      336—337
Spiral patterns      65—74 69n8 131
Spiral patterns and pentagons      159—160
Spiral patterns, "equiangular spiral"      131
Spiral patterns, artificial Fibonacci-flower spirals      70
Spiral patterns, bijugate spirals      69n8
Spiral patterns, golden spirals      124—133 263
Spiral patterns, logarithmic spiral      127 131—132 133
Spokes (in fractals)      323
Square roots      305
Squares, created using Fibonacci numbers      40 48—49
Squares, created using Lucas numbers      51
Squaring numbers      293—296 see
Squaring numbers, alternating numbers and      44—47 55 142
Squaring numbers, pattern in differences of squares      43—44 45—46 54 55 355 364
Squaring numbers, patterns in squares of Fibonacci numbers      42 43—44 45—46
Squaring numbers, perfect square      21—22 21n7 78 305 305n6
Squaring numbers, subtracting squares of Fibonacci numbers      42—43 355—359
Squaring numbers, sum of squares of Fibonacci numbers      39—42 43 54 353—354
Squaring numbers, sum of squares of Lucas numbers      51—53 56
Squaring numbers, transforming fractals      320—321
St. Francis Preaching to the Birds (Giotto)      267
Staircases, Fibonacci numbers and climbing      184—185
Static symmetry      245
Statute mile (as a measurement)      200
Stock market and Fibonacci numbers      178—183
Stonehenge (Great Britain)      237
Stradivarius, Antonio      291
Subtracting squares of Fibonacci numbers      42—43 357—361
Successive Fibonacci numbers      209—211
Sum and difference of successive powers      297—298
Sum in Pascal triangle      85—87
Sum of even-positioned Fibonacci numbers      37—38 54 353
Sum of Fibonacci numbers and distance conversion      202 202n13
Sum of odd-positioned Fibonacci numbers      38—39 54 295 353—354
Sum, angle sum of a triangle      84
Sum, Fibonacci numbers in Pascal triangle      91—94
Sum, finding a sum by multiplying      41 52 53
Sum, formulas for getting sum of Fibonacci numbers      36—42 53 54
Sum, formulas for getting sum of Lucas numbers      49—51 56
Sum, natural numbers as sum of Fibonacci numbers      188 365
Sum, ordered sum of ones and twos      187
Sum, sequences of sums of Fibonacci numbers      82—83
Sum, sum and difference      296—298
Sum, sum of squares of Fibonacci numbers      39—42 43 54 353—354
Sum, sum of squares of Lucas numbers      51—53 56
Summand      225 225n23
Sunflowers      68—69 69n8
Swiss Guard, uniforms for      268n34
Symbol to show repetition of numbers      14 14n3 30 108n1
Symmetry      245 245n10 266 342
Symmetry, forbidden symmetry      342
Temple of Olympia      111
Test of numbers in fractals      320 321 321n6
Testing numbers to find Fibonacci numbers      304—305 305n6
Tetrahedral numbers      89 89n5 90
Thermodynamics, laws of      245n10
Thorndike, Edward Lee      117
Tonic in music      285 285n6
Tower of Hanoi puzzle      27n15
Transcendental numbers      165n2
Triangles and constructing the Grossman truss      314—319
Triangles, angle sum of a triangle      84
Triangles, Fibonacci numbers as lengths of sides      195
Triangles, golden triangle      144—148 149—154
Triangles, isosceles triangles      144—148 314
Triangles, Omar Khayyam and      84n2
Triangles, Pascal triangle      84—105
Triangles, Pythagorean triangles and Pythagorean triples      192—194
Triangular numbers      89 89n4 90 211—213 212n17
Trinity (Masaccio)      267 267n30
Triples, Pythagorean      192—194 365—367
Tristan und Isolde (Wagner)      282—285
Triumph of Galatea, The (Raphael)      268
Twelve-tone method in music      288—289
Ulrichs, Timm      248—249
Unequal binary form of music      274—275
Unit fractions      162
United Nations headquarters (New York City)      243
Unites d'habitation (France)      240
UNIVAC (computer)      289 289n8
Unna (Germany)      253—254
Untitled (Fridfinnsson)      266
Utsjoki (Niemeyer)      263—264
van der Weyden, Rogier      268 268n31
Vannucci, Pietro      see "Perugino Pietro"
Variation VI (Niemeyer)      264
Vending machines and Fibonacci numbers      183—184
Venus de Milo (statue)      see "Aphrodite of Melos (statue)"
Vertex angle      144 147
Villon, Jacques      247 247n14
Violin as example of golden ratio      271 291
Vitruvius      257—258
von Koch, Helge      310n1
von Webern, Anton      289
Wagner, Richard      282—285 287
Wang, Steve C.      213
Watches, displaying of      217—220
Watson Research Center, IBM      320
Wave Principle The (Elliott)      179
Worker bees      59
Zeckendorf theorem      188n4
Zeckendorf, Edouard      188n4 202n13
Zeising, Adolph      75 115 115n8 243
Zephyr (zero)      11 19 23
Zeus (statue of)      111
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå