Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Posamentier A.S. — The Fabulous Fibonacci Numbers
Posamentier A.S. — The Fabulous Fibonacci Numbers



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The Fabulous Fibonacci Numbers

Àâòîð: Posamentier A.S.

Àííîòàöèÿ:

The most ubiquitous, and perhaps the most intriguing, number pattern in mathematics is the Fibonacci sequence. In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature—from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world.

With admirable clarity, math educators Alfred Posamentier and Ingmar Lehmann take us on a fascinating tour of the many ramifications of the Fibonacci numbers. The authors begin with a brief history of their distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal’s triangle, to name a few. Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2007

Êîëè÷åñòâî ñòðàíèö: 385

Äîáàâëåíà â êàòàëîã: 22.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Finding a particular Fibonacci number, using Binet formula      293—301 366—369
Finding a particular Fibonacci number, using golden ratio      303
Finite continued fractions      163
First differences      see "Differences"
First digits of Fibonacci numbers      207—208
Fischer, Robert      182
Fish, determining path in a hatchery      222—224
Fivefold symmetry element      342
Fixed integer      365
Florence (Italy)      20 238—240
Flos (Fibonacci)      20 22
Forbidden symmetry      342
Four Books on Human Proportions (Duerer)      258
Fourth differences      see "Differences"
Fractals      307—325
Fractions, common fractions      20n5 24n12 30
Fractions, continued fractions and Fibonacci numbers      161—175 162n1
Fractions, improper fractions      161—162
Fractions, infinite continued fractions      163—164
Fractions, proper fractions      161 162 173
Fractions, unit fractions      162
Fractions, use of horizontal bar in      25
French Academy of Sciences      200
French National Assembly      200
Fridfinnsson, Hreinn      266
Fugues in music      285—286 287
Furlongs (as a measurement)      200 200n11
Galileo Galilei      258
Game of Fibonacci Nim      225—226
Gauss, Carl Friedrich      328
Gaussian curve      246n13
Gelmeroda (Feininger)      268
Generating fractals      310—317
Geodesic draft      250n21
Geometric Compositions (Niemeyer)      249 263—264
Geometry, Fibonacci numbers in      136—143
Ghyka, Matil Costiescu      243
Giotto (di Bondone)      17 267 267n29
Girl with the Ermine, The (da Vinci)      268
Giza, Great Pyramid at      180 234—237
Golden angle      148—149 250 250n20
Golden angle and plants      64 64n3 74
Golden ratio (section)      13—15 13n2 74—76 107—160 180 263 296 327
Golden ratio (section) and congruent circles      139—140
Golden ratio (section) and consecutive Fibonacci numbers      210
Golden ratio (section) and Lucas numbers      174—175
Golden ratio (section) and measurements      201
Golden ratio (section) as a continued fraction      166—172
Golden ratio (section) as an irrational number      149—151
Golden ratio (section) in art and architecture      231—269
Golden ratio (section) in music      271—291
Golden ratio (section), constructing      120—124 360—363
Golden ratio (section), paper-folding and      159
Golden ratio (section), powers of      113—114
Golden ratio (section), precise value of      111—112 166n4
Golden rectangle      115—120 123 125—127 128—129 172
Golden rectangle and credit cards      182
Golden rectangle and watch displays      217—220
Golden rectangle in art and architecture      232—233 237 259 263
Golden rectangle, diagonal of      138—139
Golden Section, The (Hagenmaier)      248
Golden spirals      124—133 263 266 see
Golden triangle      107 144—148 260
Golden triangle in pentagrams      149—154 158
Great circle      250 250n19
Great Crash of 1929      177
Great Pyramid (Giza)      180 234—237
Grevsmuehl      250n21
Grimaldi, Giovanni Gabriello      17n1
Gris, Juan      269 269n37
Grossman truss      313—319 313n3
Grossman, George W.      313n3
Hadrian's Arch      234
Haensel und Gretel (Humperdinck)      11—12
Hagenmaier, Otto      245 248
Half a Giant Cup Suspended with an Inexplicable Appendage Five Meters Long (Dali)      268
Hambidge, Jay      245
Harmonics in music      283
Haydn, Franz Joseph      278—280
Hermite, Charles      165n2
Herodot      235
Heron of Alexandria      120—121 362
Hexagon      155
Hindu numerals      11 11n1 19 23 23n8
Hippasus of Metapontum      149 153
Hisab al-jabr w'almuqabalah (al-Khowarizmi)      19
Hispanus, Dominicus      20
Hommage a Fibonacci (Bruch)      254—255
Horizontal fraction bar      25
Human body and Fibonacci numbers      74 75—76 241—242 257 258
Humperdinck, Engelbert      11—12
Hunter, J.A.H.      136
i      see "Ludolph's number"
IBM, Watson Research Center      320
Igloo Fibonacci (Merz)      253
Immediate successor      52
Improper fractions      161—162
Impulsive waves      178 179
Indian figures      see "Hindu numerals"
Induction and proofs of Fibonacci numbers      349—369
Infinite continued fractions      163—164
Integer polynomial equation      165n2
Integers      20n5 21 24n12 33n20 112n7 149 196 211 see "Numbers"
Integers and parity      193 193n6
Integers and pentagons      152
Integers and perfect squares      21n7
Integers and Pythagorean triangle      193
Integers, fixed integers      193
Integers, positive integers      48 55 162 217 225 331—332 333 336—337 338 339 363 366
Integers, special integers      114
Investments and Fibonacci numbers      178—183
Irrational numbers      20 20n5 112 112n7 149—151 153 163 165n2 232 300—301
Isosceles triangles      144—148 151 158 195 261 313 314
Iterations of fractals      310 311 320—322 321n6
Iterations of fractals in Grossman truss      313—318
Ivy (Merz)      252
Japanese pagodas      237
Jeanneret, Charles-Edouard      see "Le Corbusier"
Johannes of Palermo      20
Johnson, Tom      289—290
Journal of Recreational Mathematics      213
Julia, Gaston      308 320
Kepler, Johannes      27 119 258
Khayyam, Omar      20 84n2
Khufu (Cheops) Pyramid (Giza)      see "Great Pyramid (Giza)"
Kilometers, conversion to miles      200—203
Knott, Ron      91
Koch snowflake      310—312
La Serie d'Or (Beothy)      247—248
Lambert, Johann Heinrich      165n2
Lame numbers      30
Lame, Gabriel      29—30
Last digit of Fibonacci numbers      206—207
Last Supper, The (da Vinci)      268
Le Corbusier      75 76 240—243 244 256
Leaf arrangements      71—74
Leaning Tower of Pisa      18 23
Leochares      245—246 246n12
Leonardo da Vinci      74—75 75n14 257 260 268
Leonardo of Pisa (Leonardo Pisano)      see "Fibonacci Leonardo"
Liber Abaci (Fibonacci)      11 12 19 20 22—27 see "Rabbits" "Regeneration
Liber Quadratorum (Fibonacci)      20
Linear equations      23
Logarithms and Euler's number      120 165n2
Logarithms, logarithmic spiral      69 127 131—132 133 147 182
Lone, Frank A.      75—76
Lucas numbers      15 27—28
Lucas numbers and Fibonacci numbers      15 97—98 104—105 227 228—230 297—298
Lucas numbers and golden ratio      174—175
Lucas numbers and golden spirals      131
Lucas numbers and Pascal triangle      97—104
Lucas numbers as triangular numbers      212
Lucas numbers, Binet formula for finding a particular number      301—302
Lucas numbers, definition of      53
Lucas numbers, Lucas spirals      69n8
Lucas numbers, proofs for      360—361
Lucas numbers, properties of      49—53
Lucas, Francois-Edouard-Anatole (Edouard)      15 27—28 27n15 97
Ludolph's number      120
Madachy, Joseph S.      171
Madonna Alba (Raphael)      261—262
Madonna and Child (Perugino)      268
Madonna Doni (Michelangelo)      268
Main antenna (in fractals)      323
Main cardioid (in fractals)      322—325
Mandelbrot set      319—325 321n6
Mandelbrot, Benoit      308—309 320
Masaccio      267n30
Mathematical induction and proofs of Fibonacci numbers      349—369
Measurements, cubits      236
Measurements, feet      241 241n4
Measurements, furlongs      200 200n11
Measurements, meters      241 241n4
Measurements, miles and kilometers      200—203
Mersenne prime numbers      69 69n7
Mersenne, Marin      131
Merz, Mario      252—254
Mexican pyramids      237
Michelangelo Buonarroti      268 268n34
Mields, Rune      266—267
Miles, conversion to kilometers      200—203
Minor modulus      331—336 337—341
Modulon (Niemeyer)      264—265
Modulor: A Harmonious Measure to the Human Scale Universally Applicable to Architecture and Mechanics, The (Le Cobrusier)      241 242 256
Mona Lisa (da Vinci)      260
Mondrian, Piet      269 269n36
Mozart, Wolfgang Amadeus      275—280 289
Multijugate phyllotaxis      70
Multiplication      23 216 225—26n24 299 303 312 365—366
Multiplication and golden ratio      114 125
Multiplication and multiples of 6      331
Multiplication and Pythagorean triples      192
Multiplication, finding a sum by multiplying      41 52 53
Multiplication, multiplication algorithm and Fibonacci numbers      195—199
Multiplication, products of Fibonacci numbers      44—47 56
Multiplication, writing quotients      30n19
Music for Strings, Percussion, and Celesta (Bartok)      285—288
Music, Fibonacci numbers in      271—291
Narayan's Cows (Johnson)      290
Natural numbers      80n1 120 188n2 202n13 207—208 301n4 350
Natural numbers as sum of Fibonacci numbers      188
Natural numbers, ordered sum of ones and twos      187
Natural numbers, prime natural numbers      193
Natural numbers, sequences of      241
Nature's Law-The Secret of the Universe (Elliott)      179 180
Nature, Fibonacci numbers in      12 13 25—27 57 59—76 132 133 222—224
Nautilus shells      132
Neveux, Marguerite      269
Niemeyer, Jo      249—252 263—265
Nonconsecutive Fibonacci numbers      188 202n13
Nonprime numbers      35 35n21 54
Notation and Fibonacci numbers      37 41 330
Notation and Lucas numbers      50
Notation, binary notation      225
Notation, musical notation      274
Numbering systems, base-10      11
Numbering systems, base-60      21 21n6
Numbering systems, binary system (base-2)      198
Numbering systems, Hindu numerals      11 19 23
Numbering systems, Roman numerals      12
Numbers      see "Digits" "Integers" "Squaring
Numbers, algebraic number      165n2
Numbers, alternating numbers      42 42n23 44—45 54 54n25 55 142
numbers, complex numbers      320 320n5
Numbers, composite numbers      35 35n21 53—54 352—353
Numbers, consecutive numbers      43—44 55 56 109—110 210 211 295
Numbers, irrational numbers      20 20n5 112 112n7 149—151 153 163 165n2 232 300—301
Numbers, natural numbers      80n1 120 187—188 188n2 193 202n13 207—208 241 301n4 350
Numbers, nonconsecutive Fibonacci numbers      187 202n13
Numbers, nonprime numbers      35 35n21
Numbers, odd prime numbers      208 328 333—336 337—341
Numbers, palindromic numbers      93—94 93n6
Numbers, pentatop numbers      89
Numbers, perfect numbers      24 24n11
Numbers, prime natural numbers      193
Numbers, prime numbers      33—34 33n20 35n22 54 69n7 131 211 212 331—337
Numbers, primitive numbers      339
Numbers, rational numbers      24 24n12 30 163
Numbers, reciprocals      111 113 162 169 201 214 362
Numbers, relatively prime numbers      33—34 33n20 53 193 210 228 337 338 351—352
Numbers, successive Fibonacci numbers      209—211
Numbers, symbol to show repetition of numbers      14 14n3 30 108n1
Numbers, tetrahedral numbers      89 89n5 90
Numbers, transcendental numbers      165n2
Numbers, triangular numbers      89 89n4 90 211—213
Numerator      23
Odd prime numbers      208 328 333—336 337—341
Odd-positioned Fibonacci numbers, sum of      38—39 54 295 355—356
Optics and Fibonacci numbers      203—206
Ordered sum of ones and twos      187
Pacioli, Luca      243 245 257 257n23 260
Pagodas      237
Painting a house and Fibonacci numbers      186
Painting I (Mondrian)      269n36
Paintings, Fibonacci numbers in      257—269
Palindromic numbers      93—94 93n6
Pankok, Otto      269 269n38
Paper-folding and pentagon      159
Parastichies      64—66
Parity      193 193n6
Parthenon (Greece)      15 111 232—233 245
Pascal triangle      84—105 84n2
Pascal, Blaise      84 84n2
Patterns      see also "Sequences"
Patterns in differences of squares      43—44 45—46 54 55 357 366
Patterns in squares of Fibonacci numbers      42 43—44 45—46 355—359
Patterns of even Fibonacci numbers      47
Patterns of spirals in plants      66—70
Patterns, "wave theory" of investing      178—183
Patterns, first-digit patterns      207—208
Patterns, last-digit patterns      206—207
Patterns, ordered sum of ones and twos      187
Patterns, symbol to show repetition of numbers      14 14n3 30 108n1
Pentagon      148 148n23 149—154 231 259 259n26
Pentagon (Washington, DC)      244
Pentagon, constructing      155—158
Pentagon, paper-folding and      159
Pentagram      148 149—154
Pentagram, paper-folding and      159
Pentatop numbers      89
Perez, Jose Victoriano Gonzalez      see "Gris Juan"
Perfect numbers      24 24n11
Perfect square      21—22 21n7 78 305 305n6
Pericles      232
Period of bulb or decoration (in fractals)      323—324
Persian War      232
Perugino, Pietro      268 268n33
Petal arrangements      71 74
Petrie, W.M.F.      236
Pfeiffer, Joerg      250n21
Phidias      110 232
Phyllotaxis      64n3 70—74 70n10
Physics and Fibonacci numbers      203—206
Physicus, Theodorus      20
Piano Sonatas (Haydn)      278—280
Piano Sonatas (Mozart)      277—278
Piero della Francesca      268 268n32
Pietro di Benedetto dei Franceschi (Pietro Borgliese)      see "Piero della Francesca"
Pineapples      13 63—64
Pinecones      13 27 64—66
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå