Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Posamentier A.S. — The Fabulous Fibonacci Numbers
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: The Fabulous Fibonacci Numbers
Àâòîð: Posamentier A.S.
Àííîòàöèÿ: The most ubiquitous, and perhaps the most intriguing, number pattern in mathematics is the Fibonacci sequence. In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature—from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world.
With admirable clarity, math educators Alfred Posamentier and Ingmar Lehmann take us on a fascinating tour of the many ramifications of the Fibonacci numbers. The authors begin with a brief history of their distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal’s triangle, to name a few. Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2007
Êîëè÷åñòâî ñòðàíèö: 385
Äîáàâëåíà â êàòàëîã: 22.10.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Finding a particular Fibonacci number, using Binet formula 293—301 366—369
Finding a particular Fibonacci number, using golden ratio 303
Finite continued fractions 163
First differences see "Differences"
First digits of Fibonacci numbers 207—208
Fischer, Robert 182
Fish, determining path in a hatchery 222—224
Fivefold symmetry element 342
Fixed integer 365
Florence (Italy) 20 238—240
Flos (Fibonacci) 20 22
Forbidden symmetry 342
Four Books on Human Proportions (Duerer) 258
Fourth differences see "Differences"
Fractals 307—325
Fractions, common fractions 20n5 24n12 30
Fractions, continued fractions and Fibonacci numbers 161—175 162n1
Fractions, improper fractions 161—162
Fractions, infinite continued fractions 163—164
Fractions, proper fractions 161 162 173
Fractions, unit fractions 162
Fractions, use of horizontal bar in 25
French Academy of Sciences 200
French National Assembly 200
Fridfinnsson, Hreinn 266
Fugues in music 285—286 287
Furlongs (as a measurement) 200 200n11
Galileo Galilei 258
Game of Fibonacci Nim 225—226
Gauss, Carl Friedrich 328
Gaussian curve 246n13
Gelmeroda (Feininger) 268
Generating fractals 310—317
Geodesic draft 250n21
Geometric Compositions (Niemeyer) 249 263—264
Geometry, Fibonacci numbers in 136—143
Ghyka, Matil Costiescu 243
Giotto (di Bondone) 17 267 267n29
Girl with the Ermine, The (da Vinci) 268
Giza, Great Pyramid at 180 234—237
Golden angle 148—149 250 250n20
Golden angle and plants 64 64n3 74
Golden ratio (section) 13—15 13n2 74—76 107—160 180 263 296 327
Golden ratio (section) and congruent circles 139—140
Golden ratio (section) and consecutive Fibonacci numbers 210
Golden ratio (section) and Lucas numbers 174—175
Golden ratio (section) and measurements 201
Golden ratio (section) as a continued fraction 166—172
Golden ratio (section) as an irrational number 149—151
Golden ratio (section) in art and architecture 231—269
Golden ratio (section) in music 271—291
Golden ratio (section), constructing 120—124 360—363
Golden ratio (section), paper-folding and 159
Golden ratio (section), powers of 113—114
Golden ratio (section), precise value of 111—112 166n4
Golden rectangle 115—120 123 125—127 128—129 172
Golden rectangle and credit cards 182
Golden rectangle and watch displays 217—220
Golden rectangle in art and architecture 232—233 237 259 263
Golden rectangle, diagonal of 138—139
Golden Section, The (Hagenmaier) 248
Golden spirals 124—133 263 266 see
Golden triangle 107 144—148 260
Golden triangle in pentagrams 149—154 158
Great circle 250 250n19
Great Crash of 1929 177
Great Pyramid (Giza) 180 234—237
Grevsmuehl 250n21
Grimaldi, Giovanni Gabriello 17n1
Gris, Juan 269 269n37
Grossman truss 313—319 313n3
Grossman, George W. 313n3
Hadrian's Arch 234
Haensel und Gretel (Humperdinck) 11—12
Hagenmaier, Otto 245 248
Half a Giant Cup Suspended with an Inexplicable Appendage Five Meters Long (Dali) 268
Hambidge, Jay 245
Harmonics in music 283
Haydn, Franz Joseph 278—280
Hermite, Charles 165n2
Herodot 235
Heron of Alexandria 120—121 362
Hexagon 155
Hindu numerals 11 11n1 19 23 23n8
Hippasus of Metapontum 149 153
Hisab al-jabr w'almuqabalah (al-Khowarizmi) 19
Hispanus, Dominicus 20
Hommage a Fibonacci (Bruch) 254—255
Horizontal fraction bar 25
Human body and Fibonacci numbers 74 75—76 241—242 257 258
Humperdinck, Engelbert 11—12
Hunter, J.A.H. 136
i see "Ludolph's number"
IBM, Watson Research Center 320
Igloo Fibonacci (Merz) 253
Immediate successor 52
Improper fractions 161—162
Impulsive waves 178 179
Indian figures see "Hindu numerals"
Induction and proofs of Fibonacci numbers 349—369
Infinite continued fractions 163—164
Integer polynomial equation 165n2
Integers 20n5 21 24n12 33n20 112n7 149 196 211 see "Numbers"
Integers and parity 193 193n6
Integers and pentagons 152
Integers and perfect squares 21n7
Integers and Pythagorean triangle 193
Integers, fixed integers 193
Integers, positive integers 48 55 162 217 225 331—332 333 336—337 338 339 363 366
Integers, special integers 114
Investments and Fibonacci numbers 178—183
Irrational numbers 20 20n5 112 112n7 149—151 153 163 165n2 232 300—301
Isosceles triangles 144—148 151 158 195 261 313 314
Iterations of fractals 310 311 320—322 321n6
Iterations of fractals in Grossman truss 313—318
Ivy (Merz) 252
Japanese pagodas 237
Jeanneret, Charles-Edouard see "Le Corbusier"
Johannes of Palermo 20
Johnson, Tom 289—290
Journal of Recreational Mathematics 213
Julia, Gaston 308 320
Kepler, Johannes 27 119 258
Khayyam, Omar 20 84n2
Khufu (Cheops) Pyramid (Giza) see "Great Pyramid (Giza)"
Kilometers, conversion to miles 200—203
Knott, Ron 91
Koch snowflake 310—312
La Serie d'Or (Beothy) 247—248
Lambert, Johann Heinrich 165n2
Lame numbers 30
Lame, Gabriel 29—30
Last digit of Fibonacci numbers 206—207
Last Supper, The (da Vinci) 268
Le Corbusier 75 76 240—243 244 256
Leaf arrangements 71—74
Leaning Tower of Pisa 18 23
Leochares 245—246 246n12
Leonardo da Vinci 74—75 75n14 257 260 268
Leonardo of Pisa (Leonardo Pisano) see "Fibonacci Leonardo"
Liber Abaci (Fibonacci) 11 12 19 20 22—27 see "Rabbits" "Regeneration
Liber Quadratorum (Fibonacci) 20
Linear equations 23
Logarithms and Euler's number 120 165n2
Logarithms, logarithmic spiral 69 127 131—132 133 147 182
Lone, Frank A. 75—76
Lucas numbers 15 27—28
Lucas numbers and Fibonacci numbers 15 97—98 104—105 227 228—230 297—298
Lucas numbers and golden ratio 174—175
Lucas numbers and golden spirals 131
Lucas numbers and Pascal triangle 97—104
Lucas numbers as triangular numbers 212
Lucas numbers, Binet formula for finding a particular number 301—302
Lucas numbers, definition of 53
Lucas numbers, Lucas spirals 69n8
Lucas numbers, proofs for 360—361
Lucas numbers, properties of 49—53
Lucas, Francois-Edouard-Anatole (Edouard) 15 27—28 27n15 97
Ludolph's number 120
Madachy, Joseph S. 171
Madonna Alba (Raphael) 261—262
Madonna and Child (Perugino) 268
Madonna Doni (Michelangelo) 268
Main antenna (in fractals) 323
Main cardioid (in fractals) 322—325
Mandelbrot set 319—325 321n6
Mandelbrot, Benoit 308—309 320
Masaccio 267n30
Mathematical induction and proofs of Fibonacci numbers 349—369
Measurements, cubits 236
Measurements, feet 241 241n4
Measurements, furlongs 200 200n11
Measurements, meters 241 241n4
Measurements, miles and kilometers 200—203
Mersenne prime numbers 69 69n7
Mersenne, Marin 131
Merz, Mario 252—254
Mexican pyramids 237
Michelangelo Buonarroti 268 268n34
Mields, Rune 266—267
Miles, conversion to kilometers 200—203
Minor modulus 331—336 337—341
Modulon (Niemeyer) 264—265
Modulor: A Harmonious Measure to the Human Scale Universally Applicable to Architecture and Mechanics, The (Le Cobrusier) 241 242 256
Mona Lisa (da Vinci) 260
Mondrian, Piet 269 269n36
Mozart, Wolfgang Amadeus 275—280 289
Multijugate phyllotaxis 70
Multiplication 23 216 225—26n24 299 303 312 365—366
Multiplication and golden ratio 114 125
Multiplication and multiples of 6 331
Multiplication and Pythagorean triples 192
Multiplication, finding a sum by multiplying 41 52 53
Multiplication, multiplication algorithm and Fibonacci numbers 195—199
Multiplication, products of Fibonacci numbers 44—47 56
Multiplication, writing quotients 30n19
Music for Strings, Percussion, and Celesta (Bartok) 285—288
Music, Fibonacci numbers in 271—291
Narayan's Cows (Johnson) 290
Natural numbers 80n1 120 188n2 202n13 207—208 301n4 350
Natural numbers as sum of Fibonacci numbers 188
Natural numbers, ordered sum of ones and twos 187
Natural numbers, prime natural numbers 193
Natural numbers, sequences of 241
Nature's Law-The Secret of the Universe (Elliott) 179 180
Nature, Fibonacci numbers in 12 13 25—27 57 59—76 132 133 222—224
Nautilus shells 132
Neveux, Marguerite 269
Niemeyer, Jo 249—252 263—265
Nonconsecutive Fibonacci numbers 188 202n13
Nonprime numbers 35 35n21 54
Notation and Fibonacci numbers 37 41 330
Notation and Lucas numbers 50
Notation, binary notation 225
Notation, musical notation 274
Numbering systems, base-10 11
Numbering systems, base-60 21 21n6
Numbering systems, binary system (base-2) 198
Numbering systems, Hindu numerals 11 19 23
Numbering systems, Roman numerals 12
Numbers see "Digits" "Integers" "Squaring
Numbers, algebraic number 165n2
Numbers, alternating numbers 42 42n23 44—45 54 54n25 55 142
numbers, complex numbers 320 320n5
Numbers, composite numbers 35 35n21 53—54 352—353
Numbers, consecutive numbers 43—44 55 56 109—110 210 211 295
Numbers, irrational numbers 20 20n5 112 112n7 149—151 153 163 165n2 232 300—301
Numbers, natural numbers 80n1 120 187—188 188n2 193 202n13 207—208 241 301n4 350
Numbers, nonconsecutive Fibonacci numbers 187 202n13
Numbers, nonprime numbers 35 35n21
Numbers, odd prime numbers 208 328 333—336 337—341
Numbers, palindromic numbers 93—94 93n6
Numbers, pentatop numbers 89
Numbers, perfect numbers 24 24n11
Numbers, prime natural numbers 193
Numbers, prime numbers 33—34 33n20 35n22 54 69n7 131 211 212 331—337
Numbers, primitive numbers 339
Numbers, rational numbers 24 24n12 30 163
Numbers, reciprocals 111 113 162 169 201 214 362
Numbers, relatively prime numbers 33—34 33n20 53 193 210 228 337 338 351—352
Numbers, successive Fibonacci numbers 209—211
Numbers, symbol to show repetition of numbers 14 14n3 30 108n1
Numbers, tetrahedral numbers 89 89n5 90
Numbers, transcendental numbers 165n2
Numbers, triangular numbers 89 89n4 90 211—213
Numerator 23
Odd prime numbers 208 328 333—336 337—341
Odd-positioned Fibonacci numbers, sum of 38—39 54 295 355—356
Optics and Fibonacci numbers 203—206
Ordered sum of ones and twos 187
Pacioli, Luca 243 245 257 257n23 260
Pagodas 237
Painting a house and Fibonacci numbers 186
Painting I (Mondrian) 269n36
Paintings, Fibonacci numbers in 257—269
Palindromic numbers 93—94 93n6
Pankok, Otto 269 269n38
Paper-folding and pentagon 159
Parastichies 64—66
Parity 193 193n6
Parthenon (Greece) 15 111 232—233 245
Pascal triangle 84—105 84n2
Pascal, Blaise 84 84n2
Patterns see also "Sequences"
Patterns in differences of squares 43—44 45—46 54 55 357 366
Patterns in squares of Fibonacci numbers 42 43—44 45—46 355—359
Patterns of even Fibonacci numbers 47
Patterns of spirals in plants 66—70
Patterns, "wave theory" of investing 178—183
Patterns, first-digit patterns 207—208
Patterns, last-digit patterns 206—207
Patterns, ordered sum of ones and twos 187
Patterns, symbol to show repetition of numbers 14 14n3 30 108n1
Pentagon 148 148n23 149—154 231 259 259n26
Pentagon (Washington, DC) 244
Pentagon, constructing 155—158
Pentagon, paper-folding and 159
Pentagram 148 149—154
Pentagram, paper-folding and 159
Pentatop numbers 89
Perez, Jose Victoriano Gonzalez see "Gris Juan"
Perfect numbers 24 24n11
Perfect square 21—22 21n7 78 305 305n6
Pericles 232
Period of bulb or decoration (in fractals) 323—324
Persian War 232
Perugino, Pietro 268 268n33
Petal arrangements 71 74
Petrie, W.M.F. 236
Pfeiffer, Joerg 250n21
Phidias 110 232
Phyllotaxis 64n3 70—74 70n10
Physics and Fibonacci numbers 203—206
Physicus, Theodorus 20
Piano Sonatas (Haydn) 278—280
Piano Sonatas (Mozart) 277—278
Piero della Francesca 268 268n32
Pietro di Benedetto dei Franceschi (Pietro Borgliese) see "Piero della Francesca"
Pineapples 13 63—64
Pinecones 13 27 64—66
Ðåêëàìà