| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | 
| Weintraub S. — Differential Forms. A complement to vector calculus |  | 
| Guillemin V., Pollack A. — Differential topology | 178 | 
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 123, 125, 150, 160 | 
| Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 21, 172 | 
| Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 119 | 
| Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 68 | 
| Rudin W. — Principles of Mathematical Analysis | 281 | 
| Bazant Z.P., Cedolin L. — Stability of structures : elastic, inelastic, fracture, and damage theories | 147 | 
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 34 | 
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 34 | 
| Fisher Y. — Fractal Image Compression. Theory and Application | 217, 218, 224—226 | 
| Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 155—161, 193—194 | 
| Acheson David — From calculus to chaos | 121, 160 | 
| Ames W.F. — Numerical methods for Partial Differential Equations | 41 | 
| Gustafsson F. — Adaptive filtering and change detection | 296 | 
| Olver P.J. — Equivalence, Invariants and Symmetry | 70, 90 | 
| Oprea J. — Differential Geometry and Its Applications | 141, 346 | 
| Finlayson B.A. — Numerical Methods for Problems With Moving Fronts | 442 | 
| Bonet J., Wood R.D. — Nonlinear Continuum Mechanics for Finite Element Analysis | 53 | 
| Wesseling P. — An introduction to multigrid methods | 215 | 
| Wesseling P. — Principles of computational fluid dynamics | 500 | 
| Korsch H.J., Jodl H.-J. — Chaos: A Program Collection for the PC | 38 | 
| Felsager B. — Geometry, particles and fields | 5, 366 | 
| Hicks N. — Notes on differential geometry | 95 | 
| Jones D.S. — Introduction to Asymptotics: A Treatment Using Nonstandard Analysis | 1 | 
| Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 43 | 
| Abell M.L., Braselton J.P. — Mathematica by Example | 347 | 
| Lee J.M. — Introduction to Smooth Manifolds | 262, 344 | 
| Smirnov V.I. — Higher mathematics. Vol.2 | 316 | 
| Clote P., Backofen R. — Computational Molecular Biology | 67 | 
| Goldstein H., Poole C., Safko J. — Classical mechanics | 295 | 
| Maeder R.E. — Computer science with mathematica | 181 | 
| Nayfeh A.H., Mook D.T. — Nonlinear Oscillations | 508 | 
| Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 548 | 
| Murnaghan F.D. — Finite deformation of an elastic solid | 48 | 
| Papapetrou A. — Lectures on general relativity | 17 | 
| Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 127 | 
| Ehlers J.F. — Mesa and Trading Market Cycles: Forecasting and Trading Strategies from the Creator of MESA | 63 | 
| Bollinger J. — Bollinger on Bollinger Bands | 203 | 
| Mukamel S. — Principles of Nonlinear Optical Spectroscopy | 104 | 
| Polya G., Latta G. — Complex Variables | 91, 155 | 
| Dill K.A., Bromberg S. — Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology | 305 | 
| Sincere M. — Understanding Stocks | 136 | 
| Hand L.N., Finch J.D. — Analytical Mechanics | 192 | 
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 431 | 
| Meisel W.S. — Computer-oriented approach to pattern recognition | 183, 186 | 
| Franklin P. — Fourier Methods | 137, 139 | 
| Braselton J.P. — Maple by Example | 392, 396, 402 | 
| Monk P. — Finite Element Methods for Maxwell's Equations | 50 | 
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 334 | 
| van den Essen A. — Polynomial automorphisms and the Jacobian conjecture | 32, 237 | 
| Edminister J.A. — Schaum's outline of electromagnetics | 47—58 | 
| Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 151, 290 | 
| Gallot S., Hulin D. — Riemannian Geometry | 3.125, 4.4bis, 4.8. | 
| Rutherford D.E. — Vector Methods | 66, 124 | 
| Cooper J. — A Matlab Companion for Multivariable Calculus | 234 | 
| Samelson R.M., Wiggins S. — Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach | 5 | 
| Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry | 131 | 
| Krantz S.G. — Function Theory of Several Complex Variables | 37 | 
| Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 40 | 
| Petersen P. — Riemannian Geometry | 28, 57 | 
| Weatherburn C. — Advanced Vector Analysis | 7, 12 | 
| Sokolnikoff I.S. — Mathematical Theory of Elasticity | 20 | 
| Montiel S., Ros A. — Curves and Surfaces | 157, 322 | 
| Aitchison I.J.R., Hey A.J.G. — Gauge theories in particle physics. Volume 1: from relativistic quantum mechanics to QED | 47, 170, 283 | 
| Eringen A.C. — Mechanics of continua | 523, 552 | 
| Shankar R. — Basic Training In Mathematics | 182 | 
| O'Donnel P. — Introduction to 2-Spinors in General Relativity | 146 | 
| McMano D., Topa D.M. — A Beginner's Guide to Mathematica | 633 | 
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 781, 785, 789, 1129 | 
| Greiner W. — Classical mechanics. Point particles and relativity | 83, 85, 101 | 
| Besse A.L. — Einstein Manifolds | 125, 35 | 
| Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers | 284 | 
| Schey H.M. — DIV, Grad, Curl, and All That: An Informal Text on Vector Calculus | 36—43 | 
| Hunter M.G., Tan F.B. (eds.) — Advanced Topics in Global Information Management (Vol. 3) | 110 | 
| Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 125 | 
| Kerker M. — The scattering of light | 141 | 
| Murphy J.J. — Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications | 27, 155—156, 227 | 
| Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | I-281, 337 | 
| Antman S.S. — Nonlinear Problems of Elasticity | 381 | 
| Planck M. — Mechanics of Deformable Bodies: Being Volume II of "Introduction to Theoretical Physics" | 30 | 
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 781, 785, 789, 1129 | 
| Fukunaga K. — Introduction to Statistical Pattern Recognition | 458 | 
| Planck M. — Theory of electricity and magnetism,: Being volume III of Introduction to theoretical physics | 25, 27 | 
| Menzel D.H. — Mathematical Physics | 121 | 
| Ready J.F., Farson D.F. — LIA handbook of laser materials processing | 92, 95; see also “beam divergence” | 
| Mukamel S. — Principles of nonlinear spectroscopy | 104 | 
| Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 399 | 
| Morita S. — Geometry of differential forms | 152 | 
| Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 112 | 
| Konopinski E.J. — Electromagnetic fields and relativistic particles | 472—474 | 
| Purves D. (ed.), Augustine G.J. (ed.), Fitzpatrick D. (ed.) — Neuroscience | 547 | 
| Lebedev L.P., Cloud M.J. — Tensor Analysis | 65 | 
| Haas A.E. — Introduction to theoretical physics, Vol. 1 and 2 | 115 | 
| Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 384 | 
| Morita Sh. — Geometry of Differential Forms | 152 | 
| Greenberg M.D. — Advanced engineering mathematics | 761, 1210 | 
| Bleecker D. — Gauge Theory and Variational Principles | 125, 127 | 
| Sparrow C. — The Lorenz equations: bifurcation, chaos, and strange attractors | 9, 198 | 
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 781, 785, 789, 1129 | 
| Koerber G.G. — Properties of Solids | 16 | 
| Furui S. — Digital Speech Processing, Synthesis, and Recognition | 363 | 
| Munk M.M. — Fundamentals Of Fluid Dynamics For Aircraft Designers | 14 | 
| Yano K. — Differential geometry on complex and almost complex spaces | 7, 23 | 
| Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1) | see also “Loops” | 
| do Carmo M.P. — Riemannian geometry | 83 (Ex.) | 
| Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach | 414 | 
| Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | II-25-7 | 
| O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 195, 213 | 
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 257, 258 | 
| Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 238 | 
| Held A. (ed.) — General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2 | see “Loops” | 
| Aoki K. — Nonlinear dynamics and chaos in semiconductors | 143 | 
| Munkres J.R. — Analysis on manifolds | 263 | 
| Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 13, 22 | 
| Ludvigsen M. — General relativity. A geometric approach | 65 | 
| Char B.W. — First Leaves: A Tutorial Introduction to Maple V | 99 | 
| Allaire G. — Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation | 3 | 
| Csiszar I., Körner J. — Information Theory: Coding Theorems for Discrete Memoryless Systems | see “Informational divergence” | 
| Auerbach F. — Modern magnetics | 42, 251 | 
| Frazer R.A., Duncan W.J., Collar A.R. — Elementary Matrices | 290 | 
| Müller-Olm M. — Modular Compiler Verification: A Refinement-Algebraic Approach Advocating Stepwise Abstraction | 87 — 90, 92 | 
| Desloge E.A. — Classical Mechanics. Volume 1 | 408 — 409, 414, 416, 424 | 
| Uttal W.R., Kakarala R., Dayanand S. — Computational modeling of vision. The role of combination | 52 | 
| D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 279, 87, 291, 2, 355, 359, 364, 370 | 
| Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 119 | 
| Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 303, 374 | 
| Kuttler K. — Calculus, Applications and Theory | 593 | 
| Kullback S. — Information theory and statistics | 6, 22, 41, 110, 142, 190, 212, 254 | 
| Greiner W., Reinhardt J. — Quantum electrodynamics | 273, 282 | 
| Olver P.J., Shakiban C. — Applied linear. algebra | 88, 338 | 
| Economou E.N. — Green's Functions in Quantum Physics | 209, 234 | 
| D'Inverno R. — Introducing Einstein's Relatvity | 151, 154, 157, 302 | 
| Neff H.P.Jr. — Introductory electromagnetics | 13—16 | 
| Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 29, 112 | 
| Stewart I.W. — The Static and Dynamic  Continuum Theory of  Liquid Crystals: A Mathematical Introduction | 11 | 
| Siegel W. — Fields | VII | 
| Rosenfeld B. — Geometry of Lie Groups | 14 | 
| Oprea J. — Differential Geometry and Its Applications | 426 | 
| Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (1)571, 573, 595, 596, 604, 606 | 
| Mihalas D., Mihalas B.W. — Foundations of Radiation Hydrodynamics | 659—661, 679—681 | 
| Kitahara M. — Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics  and Thin Plates | 11 | 
| Knopp K. — Theory and applications of infinite series | 65, 101, 160, 391 | 
| Haller G. — Chaos Near Resonance | 5 | 
| Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 151 | 
| Bayin S.S. — Mathematical Methods in Science and Engineering | 194 | 
| Arya A.P. — Introduction to Classical Mechanics | 164 | 
| Martin J Buerger — Crystal Structure Analysis | 118 | 
| Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 141, 240 | 
| Eringen A.C., Suhubi E.S. — Elastodynamics (vol.1) Finite motions | 307 | 
| Friedlander F.G. — The Wave Equation on a Curved Space-Time | 11 | 
| Vogel C.R. — Computational Methods for Inverse Problems (Frontiers in Applied Mathematics) | 145 | 
| Bridges D.S. — Foundations Of Real And Abstract Analysis | 256 | 
| Sokolnikoff I.S. — Mathematical Theory of Elasticity | 20 | 
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 65 | 
| Theodoridis S., Koutroumbas K. — Pattern recognition | 174 | 
| Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 45—51 | 
| Geckeler S. — Optical fiber transmission systems | 15, 83, 85, 268 | 
| Browder A. — Mathematical Analysis: An Introduction | 288 | 
| Rutherford D.E. — Vector methods. Applied to differential geometry, mechanics, and potential theory | 66, 124 | 
| Ohanian H.C. — Classical Electrodynamics | 15, 20, 22, 23 | 
| Sutton O.G. — Mathematics in action | 53 | 
| Morita S. — Geometry of Differential Forms | 152 | 
| Goffman C. — Calculus of several variables | 167 | 
| Krizek M., Somer L., Luca F. — 17 Lectures on Fermat Numbers: From Number Theory to Geometry | 179 | 
| Goldenfeld N. — Lectures on Phase Transitions and the Renormalization Group | 11, 183, 302 | 
| Schwartz M. — Principles of electrodynamics | 17, 66, 69 | 
| Hermann R. — Differential geometry and the calculus of variations | 3, 139, 386, 399 | 
| Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 618 | 
| Landgrebe D.A. — Signal Theory Methods in Multispectral Remote Sensing | 149 | 
| Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 1 | 
| Amari Sh. — Differential Geometrical Methods in Statistics (Lecture notes in statistics) | 84 | 
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 317 | 
| Ashby W.R. — An introduction to cybernetics | 134 | 
| Dembo A., Zeitouni O. — Large deviations techniques and applications | 238 | 
| Steen W.M. — Laser material Processing | 24 | 
| Atkins P. — Molecular Quantum Mechanics | 415, 518 | 
| Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 22 | 
| Davis H. F., Snider A. D. — Introduction to Vector Analysis | 88—94 | 
| Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 1 | 281 | 
| Sverdrup H.U., Johnson M.W., Fleming R.H. — The Oceans: their physics, chemistry, and general biology | 420 | 
| Wilson W. — Theoretical physics - Relativity and quantum dynamics | 82 | 
| Morse P.M. — Methods of theoretical physics | 34 | 
| Woods F.S., Bailey F.H. — A Course in Mathematics. Volume II | II, 279 | 
| Green J.A. — Sequences And Series | 27 | 
| Siegel W. — Fields | VII | 
| Krantz S.G. — Function theory of several complex variables | 37 | 
| Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods | 398, 400 | 
| Weinreich G. — Geometrical vectors | 3, 60—62 | 
| Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 415, 518 | 
| Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 84 | 
| Frankel T. — The geometry of physics: an introduction | 93, 136, 304 | 
| Barry Steven, Davis Stephen — Essential Mathematical Skills: For Students of Engineering, Science and Applied Mathematics | 108 | 
| Hildebrand F.B. — Advanced Calculus for Applications | 277 | 
| Griffits D.J. — Introductions to electrodynamics | 16, 17, 549—551 | 
| Strang G. — Introduction to Applied Mathematics | 187, 190, 214, 599 | 
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 431 | 
| Schutz B.F. — A first course in general relativity | 137, 177 | 
| Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 137 | 
| Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 158, 159, 172—174 | 
| Kuo H.-H. — Gaussian Measures in Banach Spaces | 213 | 
| Hartmann A.K., Rieger H. — Optimization Algorithms in Physics | 133, 139 | 
| Zeidler E. — Oxford User's Guide to Mathematics | 360, 364, 854 | 
| Arnold V.I. — Ordinary Differential Equations | 198 | 
| Edward M. Purcell — Electricity and magnetism | 57 | 
| Collatz L. — Functional analysis and numerical mathematics | 120 | 
| Smith W.J. — Modern Lens Design: A Resource Manual | 236 | 
| Jahne B., Haubecker H. — Computer vision and applications | 384 | 
| Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 371—381 | 
| Librescu L., Song O. — Thin-Walled Composite Beams:Theory and Application | 261 | 
| Wang D. (ed.), Zheng Z. (ed.) — Differential Equations with Symbolic Computations | 263, 264 | 
| Good I.J. — Information, Weight of Evidence. the Singularity Between Probability Measures and Signal Detection | 44, 47, 51 | 
| Lee A. — Mathematics Applied to Continuum Mechanics | 62 | 
| Pitts D.R., Sissom L.E. — Schaum's outline of theory and problems of heat transfer | 128 | 
| Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 171, 234 | 
| Hopf L., Nef W. — Introduction To The Differential Equations Of Physics | 46 | 
| Courant R. — Differential and Integral Calculus, Vol. 1 | 39, 45, see also "Convergence" | 
| Fung Y. — A First Course in Continuum Mechanics: for Physical and Biological Engineers and Scientists | 61 | 
| Heinonen J. — Lectures on Analysis on Metric Spaces | 15 | 
| Green J.A. — Sequences and series | 27 | 
| Woods F.S. — Advanced Calculus | 211 | 
| Frankel T. — The geometry of physics: An introduction | 93, 136, 304 | 
| Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | II-25-7 | 
| Ascher U., Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | 19, 33 | 
| Schutz B. — Geometrical Methods in Mathematical Physics | 137, 176, 196
Divergence in spherical coordinates | 
| Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | 17, 30 | 
| Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 76, 91 | 
| Hubbard B. — The World According to Wavelets: The Story of a Mathematical Technique in the Making | 105, 107 | 
| Zorich V.A., Cooke R. — Mathematical analysis II | 203, 260, 274 | 
| Zorich V. — Mathematical Analysis | 203, 260, 274 | 
| Weber E. — Electromagnetic Fields - Theory and Applications (Volume 1 - Mapping of Fields) | 541 | 
| Synge J. L. — Tensor Calculus | 57, 134, 193 | 
| Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (1)571, 573, 595, 596, 604, 606 | 
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 202, 269, 317 | 
| Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts) | 47, 76 | 
| D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 279—287, 291—292, 355, 359, 364, 370 | 
| Rosenberg S. — The Laplacian on a Riemannian manifold | 18 | 
| Cushman-Roisin B. — Introduction to geophysical fluid dynamics | see "Convergence/divergence" | 
| Kline M. — Mathematical thought from ancient to modern times | 781, 785, 789, 1129 | 
| Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 152 | 
| Gurzadian G.G., Dmitriev V.G. — Handbook of Nonlinear Optical Crystals | 54, 63 | 
| Andrea Toselli, Olof Widlund — Springer Series in Computational Mathematics | see $H(div; \Omega)$ |