| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Kogut J.B., Stephanov M.A. — The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments | |
| Cardy J. — Scaling and renormalization in statistical physics | |
| Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 396, 492, 493, 498, 663, 2188 |
| Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 161—164 |
| Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics | 308, 319 |
| Kassel C. — Quantum Groups | 120 |
| Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 237, 332, 673 |
| Dodge C.W. — Sets, logic & numbers | 60, 86 |
| Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 63 (exercise 17), 68—69, 253, 515 |
| Husemoeller D. — Elliptic curves | 410 |
| Barth W., Peters C., Van de Ven A. — Compact complex surfaces | see Poincare duality, relative duality, Serre duality |
| Coxeter H.S.M. — Non-Euclidean Geometry | 19, 26, 51, 62, 165 |
| Levitz K., Levitz H. — Logic and Boolean Algebra | 86—87 |
| Eisenbud D. — Commutative algebra with a view toward algebraic geometry | 520, 546 |
| Silverman J.H. — The arithmetic of elliptic curves | 364 |
| Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 396, 492, 493, 498, 663, 2188 |
| Pareigis B. — Categories and functors | 12 |
| MacLane S., Moerdijk L. — Sheaves in Geometry and Logic | 480, 515 |
| Webster R. — Convexity | 99 |
| Steen S.W.P. — Mathematical Logic with Special Reference to the Natural Numbers | 52 |
| Melrose R. — The Atiyah-Singer index theorem (part 3) | 120 |
| Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 6 |
| Herrmann H.J. (ed.), Roux S. (ed.) — Statistical models for the fracture of disordered media | 107, 133 |
| Fletcher R. — Practical methods of optimization. Volume 2: constrained optimization | 69 |
| Voisin C. — Hodge theory and complex algebraic geometry 1 | 130 |
| Baker G.A., Graves-Morris P. — Pade approximants (vol. 2) | I: 31, 236 |
| Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 231 |
| Dodge C.W. — Foundations of algebra and analysis | 60, 86 |
| Thomas C. — Characteristic Classes and the Cohomology of Finite Groups | 29 |
| Maugin G.A. — Material inhomogeneities in elasticity | 11 |
| Baker G.A., Graves-Morris P. — Pade approximants (vol. 1) | I:31, 236 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 406n |
| Halmos P.R., Givant S. — Logic as Algebra | 46 |
| Walker R.J. — Algebraic Curves | 41 |
| Scheinerman E.R., Ullman D.H. — Fractional graph theory: a rational approach to the theory of graphs | 8, 117, 186 |
| Ash R.B. — Abstract algebra: the basic graduate year | 10.1 |
| Godsil C., Royle G. — Algebraic Graph Theory | 79 |
| Eisenbud D. — Computations in Algebraic Geometry with Macaulay 2 | 26 |
| Eilenberg S., Steenrod N. — Foundations of Algebraic Topology | 14 |
| Auslender A., Teboulle M. — Asymptotic Cones and Functions in Optimization and Variational Inequalities | 13 |
| F.Giannessi, F.Giannessi — Constrained Optimization and Image Space Analysis | 308 |
| Hilton P.J., Stammbach U. — A course in homological algebra | 46, 48 |
| Reid M., Szendroi B. — Geometry and Topology | 85—86, 90 |
| Kanatani K. — Statistical Optimization for Geometric Computation: Theory and Practice | 11, 194 |
| Palmer J. — Planar Ising Correlations | 45 |
| Semple J.G., Kneebone G.T. — Algebraic projective geometry | 21 |
| Burke E.K., Kendall G. — Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques | 20, 23, 231 |
| Brouwer A.E., Cohen A.M., Neumaier A. — Distance-Regular Graphs | 240 |
| Aikawa H., Essen M. — Potential Theory - Selected Topics | 115, 149 |
| Bergh J., Teillaud M. (Ed) — Effective Computational Geometry for Curves and Surfaces | 74 |
| Drmac Z. (ed.), Tutek Z. (ed.), Marusic M. (ed.) — Proceedings of the Conference on Applied Mathematics and Scientific Computing | 109 |
| McEneaney W.M. — Max-Plus Methods for Nonlinear Control and Estimation | 16 |
| Mishra S.K., Giorgo G. — Invexity and Optimization | 11 |
| Pierce B.C. — Basic category theory for computer scientists | 9 |
| Goldblatt R. — Topoi | 45 |
| Ericson T. — Codes on Euclidean Spheres | 298 |
| Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry | 104, 273 |
| Chung K.L., Walsh J.B. — Markov Processes, Brownian Motion, and Time Symmetry | 344, 347 |
| Szkelyhidi L. — Discrete Spectral Synthesis and Its Applications | 1, 9 |
| Torn A. (Ed), Zilinskas J. (Ed) — Models and Algorithms for Global Optimization: Essays Dedicated to Antanas Zilinskas on the Occasion of His 60th Birthday | 8 |
| Green J.A. — Sets and Groups | 7 |
| Simon B. — The Statistical Mechanics of Lattice Gases (vol 1) | 154—170 |
| Lad F. — Operational Subjective Statistical Methods. A Mathematical, Philosophical, and Historical Introduction | 109—111 |
| Smith S.W. — Digital Signal Processing | 161, 210—212, 236 |
| Dowling L.W. — Projective Geometry | 161 |
| Yeomans J.M. — Statistical Mechanics of Phase Transitions | 92 |
| Papadimitriou C.H. — Computational Complexity | 222, 236 |
| Dudgeon D.E., Mersereau R.M. — Multidimensional Digital Signal Processing | 69, 334—335 |
| Kadanoff L.P. — Statistical physics | 359, 371, 401 |
| Wilson J.S. — Profinite groups | 105 ff. |
| Motwani R., Raghavan P. — Randomized algorithms | see “Geometric duality” |
| Liu Q., Erne R. — Algebraic Geometry and Arithmetic Curves | 243—247, 281 |
| Sinha S.M. — Mathematical Programming: Theory and Methods | 177 |
| Fulton W. — Algebraic curves | 96 |
| Volakis J.L., Chatterjee A., Kempel L.C. — Finite element method for elecromagnetics | 11, 13 |
| Boas R.P. — A Primer of Real Functions | 75, 234 |
| Steenrod N.E. — First Concepts of Topology | 27 |
| Coxeter H.S.M. — Introduction to Geometry | see also Reciprocal polyhedra |
| Snyder V., Sisam C.H. — Analytic Geometry of Space | 113 |
| Jahne B. — Digital Image Processing | 486 |
| Frampton P. — Dual Resonance Models and Superstrings | see also “FESR duality”, “Global duality”, “Local duality” |
| Kuo W., Zuo M.J. — Optimal Reliability Modeling: Principles and Applications | 479 |
| Rubinstein M., Colby R.H. — Polymer Physics | 391 |
| Gruenberg K.W. — Linear Geometry | 85 |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 1) | 126, 130, 169, 209 |
| Duffie D. — Security Markets. Stochastic Models | 31, 32, 62 |
| Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 95 |
| Yam T.Y. — Lectures on Modules and Rings | 515 |
| Wolf-Gladrow D.A. — Lattice-gas cellular automata and lattice Boltzmann models | 249 |
| Bonnans F.J., Gilbert C.J., Lemarechal C. — Numerical Optimization | 294 |
| von Neumann John, Morgenstern Oscar — Theory of games and economic behavior | 104 |
| Barone V., Predazzi E. — High-energy particle diffraction | 135, 138 |
| van Baal P. (ed.) — Confinement, duality, and non-perturbative aspects of QCD | 358, 379, 385, 476, 521 |
| Sheil-Small T. — Complex polynomials | 172 |
| Nagaosa N. — Quantum field theory in condensed matter physics | 70, 145 |
| Sack J.R., Urrutia J. (Ed) — Handbook of Computational Geometry | 52, 234, 644 |
| Feller W. — Introduction to probability theory and its applications (volume 1) | 91 |
| Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1) | 365, 375, 378 |
| Aubin J.- P., Wilson S. — Optima and Equilibria: An Introduction to Nonlinear Analysis | 325, 374 |
| Strang G. — Linear Algebra and Its Applications | 413, 416, 427,438 |
| Kienzler R., Herrmann G. — Mechanics of material space: with applications to defect and fracture mechanics | 4, 51, 79, 141, 202 |
| Bellman R.E. — Introduction to the mathematical theory of control processes (Volume I: Linear Equations and Quadratic Criteria) | 99 |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 356 |
| Bellman R. — Introduction to the mathematical theory of control processes (Volume II: Nonlinear Processes) | 140, 202, 213, 224 |
| Held A. (ed.) — General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2 | 365, 375, 378 |
| Faugeras O., Luong Q., Papadopoulo T. — The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple Images of a Scene and Some of Their Applications | 7, 8, 10, 55, 66, 89, 106—114, 116, 118, 128, 146—168, 185, 189, 190, 252, 261, 352, 354, 364, 386, 396, 406, 423, 444, 446, 459 |
| Mercier A. — Analytical and canonical formalism in physics | 102 |
| Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 39, 150 |
| Goswami J.C., Chan A.K. — Fundamentals of Wavelets : Theory, Algorithms, and Applications | 93 |
| Papadimitriou C.H., Steiglitz K. — Combinatorial Optimization: Algorithms and Complexity | 67—85 |
| Aslrom K.J. — Introduction to Stochastic Control Theory | 238, 240, 242 |
| Barnette D. — Map Coloring Polyhedra and the Four Color Problem | 86ff |
| Berger M., Cole M. (translator) — Geometry I (Universitext) | 6.5, 8.1.8, 11.1.5, 12.1.2.6, 16.5.6 |
| Collins P.D., Squires E.J., Martin A.D. — Particle Physics and Cosmology | 317 |
| Murota K. — Discrete convex analysis | 2, 11 |
| Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations | 232, 371 |
| Feller W. — Introduction to probability theory and its applications (Volume II) | 394—398, 609—610 |
| Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1) | 14, 1225ff, 1456, 1488 |
| von Neumann J. — Continuous Geometry | 3 |
| Müller-Olm M. — Modular Compiler Verification: A Refinement-Algebraic Approach Advocating Stepwise Abstraction | 43 — 44, 46, 48, 59, 71 |
| Fenn R. — Geometry | 186 |
| Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 604 |
| Li H., Gras G. — Class Field Theory: From Theory to Practice | 53, 56, 57, 97, 182, 287, 331, 332, 334, 411, 414, 443, 444, 449 |
| Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover * o Table of Contents Read a Sample Chapter Geometric Programming for Computer Aided Design | 130 |
| Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.3 | 1167, 1172ff |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 126, 130, 169, 209, 439, 442 |
| Kozen D.C. — The Design And Analysis Of Algorithms | 15 |
| Hazewinkel M. — Handbook of Algebra (part 2) | 45 |
| Pitkethly J., Davey B.A. — Dualisability: Unary Algebras and Beyond | 77, 14—18 |
| Petrou M., Sevilla P.G. — Image Processing: Dealing with Texture | 69 |
| Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 317 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 597, 598 |
| Coxeter H.S.M., Greitzer S.L. — Geometry revisited | 132 |
| Mcmullen P., Schulte E. — Abstract Regular Polytopes | 28 |
| Daniel C. Mattis — The theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods | 448 |
| Mirsky L. — Transversal theory. An account of some aspects of combinatorial mathematics | 32—38, 216 |
| Neff H.P.Jr. — Introductory electromagnetics | 88 |
| Bertlmann R.A. — Anomalies in Quantum Field Theory | 68 |
| Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 59 |
| Siegel W. — Fields | IIA7, IIIA4, C4, IXCl,XB5, C6, XIB4,6 |
| Hatfield B. — Quantum field theory of point particles and strings | 664 |
| Thayse A. — Boolean Calculus Of Differences | 6 |
| Bellman R., Kalaba R. — Quasilinearization and nonlinear boundary-value problems | 20 |
| Turaev V.G. — Quantum Invariants of Knots and 3-Manifolds | 20 |
| Lang S. — Introduction to Algebraic and Abelian Functions | 53, 67—71, 122—123 |
| König S., Zimmermann A. — Derived Equivalences For Group Rings | 180 |
| Greene B. — The elegant univerce | 297—306, 312—16, 332—33, 381—82 |
| M.A.Akivis, V.V.Goldberg — Projective Differential Geometry of Submanifolds | 129 |
| Polchinski J. — String theory (volume 1). An introduction to the bosonic string | see "T-duality", "World-sheet duality" |
| van der Giessen E., Wu T. Y. — Advances in Applied Mechanics, Volume 34 | 303, 310 |
| Beth T., Jungnickel D., Lenz H. — Design Theory (vol. 2) | 23 |
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 9, 149 |
| Johnson C. — Numerical solution of partial differential equations by the finite element method | 97, 151 |
| Lande A. — Foundations of quantum theory | 75, 76 |
| Ryser H.J. — Combinatorial Mathematics | 90 |
| Pevzner P.A. — Computational Molecular Biology An Algorithmic Approach | 113 |
| Bellman R.E., Dreyfus S.E. — Applied Dynamic Programming | 50, 203, 204 |
| Marks R.J.II. — The Joy of Fourier | 24 |
| Gross J.L., Tucker T.W. — Topological Graph Theory (Wiley Series in Discrete Mathematics and Optimization) | 31, 116 |
| Weinberg S. — The Quantum Theory of Fields. Vol. 3 Supersymmetry | 174—5, 292—4 |
| Coxeter H.S.M. — The Real Projective Plane | 13—16, 66 |
| Lang S. — Introduction to Algebraic and Abelian functions | 53, 67—71, 122—123 |
| Bezdek A. — Discrete Geometry | 20 |
| Aigner M. — Graph theory | 25 |
| Struik D.J. — Lectures on Analytic and Projective Geometry | Secs. 2-8, 3-3, 72 |
| Bellman R.E. — Some vistas of modern mathematics: Dynamic programming, invariant imbedding, and the mathematical biosciences | 36 |
| Hayes D.F. (ed.), Shubin T. (ed.) — Mathematical Adventures for Students and Amateurs | 122 |
| Domb C.M., Green M. — Phase Transitions and Critical Phenomena: Series Expansion for Lattice Models, Vol. 3 | 662 |
| Sommerville D. — An introduction to the geometry of N dimensions | 9, 56 |
| Bertsekas D.P. — Dynamic programming and optimal control (Vol. 2) | 65, 222 |
| Bourgin R.D. — Geometric Aspects of Convex Sets with the Radon-Nikodym Property | 116, 143, 159, 390 |
| Enderton H.B. — A Mathematical Introduction to Logic | 28 |
| Antoine J.-P. (ed.), Tirapegui E. (ed.) — Functional Integration: Theory and Applications | 3 |
| Bellman R.E., Wing G.M. — An Introduction to Invariant Imbedding | 186 |
| Craven B.D. — Mathematical Programming and Control Theory | 38, 51, 69, 96, 98, 104, 106, 114 |
| Goldstein L.J. — Analytic Number Theory | 111 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 225 |
| Fulton W. — Algebraic Curves. An Introduction to Algebraic Geometry | 96 |
| Mitrinovic D.S., Pecaric J.E., Volenec V. — Recent Advances in Geometric Inequalities | 26, 49 |
| Franklin G.F., Workman M.L., Powell J.D. — Digital Control of Dynamic Systems | 394 |
| Goswami J., Chan A. — Fundamentals of Wavelets. Theory, Algorithms, and Applications | 93 |
| Atkins P. — Molecular Quantum Mechanics | 6 |
| Sommerville D.M.Y. — The elements of non-Euclidean geometry | 50, 100, 226 |
| Davis H. F., Snider A. D. — Introduction to Vector Analysis | 221, 240 |
| Prasolov V.V., Tikhomirov V.M. — Geometry | 53, 124, 128 |
| Borovik A.V. — Mathematics under the microscope | 250 |
| Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 59, 345 |
| Fink K. — A brief history of mathematics | 249 |
| Zhang K., Li D. — Electromagnetic Theory for Microwaves and Optoelectronics | 17, 46 |
| Christe P., Henkel M. — Introduction to conformal invariance and its applications to critical phenomena | 11, 102, 104, 109, 125 |
| Verdina J. — Projective Geometry and Point Tranformations | 23 |
| Siegel W. — Fields | IIA7, IIIA4, C4, IXC1, XB5, C6, XIB4, 6 |
| Carroll R.W. — Mathematical physics | 316 |
| Van Orman Quine W. — Methods of Logic | 59, 1, 107 |
| Dawson D. — Introduction to Markov Chains | 39 |
| Szabo R.J. — An Introduction to String Theory and D-Brane Dynamics | 5, 109 |
| Katz V.J. — A History of Mathematics: An Introduction | 785—787 |
| Beckenbach E.F., Bellman R. — Inequalities | 124, 125 |
| Zallen R. — The Physics of Amorphous Solids | 60, 61, 167 |
| Dicks W., Dunwoody M.J. — Groups acting on graphs | see Poincar$\acute{e}$ and geometric duality |
| Gries D. — A Logical Approach to Discrete Math | 32, 248 |
| Loomis L.H., Sternberg S. — Advanced calculus | 15, 68 |
| Bennett C., Sharpley R.C. — Interpolation of Operators | §1.4, 174 |
| Aldous J.M., Wilson R. — Graphs and Applications: An Introductory Approach | 264 |
| Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 6 |
| Bellman R. — Methods of nonlinear analysis (Vol. 2) | 1, 20 |
| Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 121 |
| Plesken W. — Group Rings of Finite Groups Over P-Adic Integers | 73 |
| Howes N.R — Modern Analysis and Topology | 149 |
| Bjorner A. — Oriented Matroids | 45, 115, 135 |
| Boissonnat J.D., Yvinec M. — Algorithmic Geometry | 142, 268 |
| Gruenberg K.W., Weir A.J. — Linear Geometry | 85 |
| Chung K.L., Walsh J.B — Markov Processes, Brownian Motion, and Time Symmetry | 344, 347 |
| Hartshorne R. — Algebraic Geometry | 239—249, see also "Serre duality" |
| Strang G. — Introduction to Applied Mathematics | 88, 98, 101, 105, 623, 635, 693, 695, 727, 730, 732 |
| HarrisR. — Nonclassical physics: beyond Newton's view | see "Wave-particle duality" |
| Bjorner A., Vergnas M., Sturmfels B. — Oriented Matroids, Second edition (Encyclopedia of Mathematics and its Applications) | 45, 115, 135 |
| Richter-Gebert J. — Realization Spaces of Polytopes, Vol. 164 | 24 |
| Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians | 14, 1225ff, 1456, 1488 |
| Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501) | 14, 1225ff, 1456, 1488 |
| Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics | 439, 452 |
| Kneebone G.T. — Mathematical Logic and the Foundations of Mathematics: An Introductory Survey | 25, 108, 138, 208, 239, 240, 257, 259, 260 |
| Ben-Ari M — Mathematical Logic for Computer Science | 25, 108, 138, 208, 239, 240, 257, 259, 260 |
| Mehlhorn K. — Data structures and algorithms 3: multi-dimensional searching and computational geometry | 246 |
| Monk J.D. (ed.) — Handbook of Boolean Algebras, Vol. 1 | 107 |
| Henkel M. — Conformal Invariance and Critical Phenomena | 17, 20, 67, 151, 153, 159, 182, 188 |
| Partee B.H., Meulen A.T., Wall R.E. — Mathematical Methods in Linguistics | 277, 278, 280, 282, 283, 385, 401 |
| Suppes P.(ed.) — Handbook of Proof Theory.Studies in logic the foundations of mathematics.Volume 137. | 739 |
| Hazewinkel M. — Handbook of Algebra (÷àñòü 1) | 848 |
| Streater R.F. — Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics | 6 |
| Hartmann A.K., Rieger H. — Optimization Algorithms in Physics | 236 |
| Fuchs M., Seregin G. — Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids | 15 |
| Jahne B., Haubecker H. — Computer vision and applications | 487 |
| Brown L., Dresden M., Hoddeson L. — Pions to quarks: Particle physics in the 1950s | 606, 710 |
| Frohlich J. — Quantum Groups, Quantum Categories And Quantum Field Theory | 28, 84, 184 |
| Ifrah G., Bellos D. — The Universal History of Numbers: From Prehistory to the Invention of the Computer | 32 |
| Polchinski J. — String theory (volume 2). Superstring theory and beyond | see "Montonen — Olive duality", "S-duality", "String-string duality", "T-duality", "U-duality" |
| Gossett E. — Discrete Math with Proof | 57, 428 |
| Kardar M. — Statistical physics of fields | 128, 184, 354 |
| Foulds L.R. — Combinatorial optimization for undergraduates | 34—48 |
| Yates R.C. — Curves and Their Properties | 48 |
| Kline M. — Mathematics for the Nonmathematician | 242 ff. |
| Elliott Mendelson — Introduction to mathematical logic | 21, 76 |
| Steen S. — Mathematical Logic with Special Reference to the Natural Numbers | 52 |
| Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 6, 13, 55—56, 68 |
| Davies P. — The New Physics | 212 |
| Kaufmann A., Grouchko D., Cruon R. — Mathematical models for the study of the reliability of systems | 65, 79, 151, 190, 199 |
| Kleinert H. — Gauge fields in condensed matter (part 2) | 133 |
| Andrews P.B. — An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof | 143—148 |
| Gill A. — Applied Algebra for the Computer Sciences | 103, 132, 148 |
| Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 317 |
| Hill F.J., Peterson G.R. — Computer Aided Logical Design with Emphasis on VLSI | 33, 165 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 226 |
| Beth T., Jungnickel D., Lenz H. — Design Theory (Vol. 1) | 23 |
| Pastur L., Figotin A. — Spectra of Random and Almost-Periodic Operators | 461 |
| Beckenbach E., Bellman R. — Inequalities (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge) | 124, 125 |
| John P. — Statistical Design and Analysis of Experiments (Classics in Applied Mathematics No 22. ) | 290—291 |
| Steen S. — Mathematical Logic | 52 |
| Jost J. — Bosonic Strings: A mathematical treatment | 90 |
| Mangasarian O. — Nonlinear programming | 113—130, 157—160, 174—176 |
| Pallaschke D., Rolewicz S. — Foundations of Mathematical Optimization. Convex Analysis without Linearity | 42, 43 |
| Bird R., de Moor O. — Algebra of programming | 28—30, 41, 52, 118 |
| Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | 69, 205, 207, 212 |