|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Baker G.A., Graves-Morris P. — Pade approximants (vol. 2) |
|
|
Ïðåäìåòíûé óêàçàòåëü |
-Algorithm I: 80—84
-Algorithm I: 76—80 84—90
-Algorithm for vector sequences II: 55
-Algorithm, generalized II: 14—16
A-stability II: 151
Acceleration of convergence I: 16—17 69—90
Accuracy, numerical I: 58—65
Accuracy-through-order I: 1—2
Aitken’s method I: 69—74
Algorithms for rational interpolation II: 6—17
Anharmonic oscillator II: 170—171
Arzela’s theorem I: 175
Associated continued fraction I: 127
Asymptotic convergence I: 200
Asymptotic expansion I: 221
Backward recurrence method I: 115
Baker algorithm I: 66
Baker definition I: 21—22 II:
Baker — Gammel approximants II: 21—32 63
Baker — Gammel approximants, asymptotic II: 30—31
Baker, Gammel and Wills, conjecture of I: 286
Baker, Gammel and Wills, theorem of I: 32—33
Beardon’s theorems I: 237
Behte — Salpeter equation II: 108—113
Bigradients I: 37—42 136—137
Bigradients, polynomial I: 39
Binomial function I: 139 144
Biorthogonal algorithm II: 76—79
BLOCKS I: 24—31
C(L/M), definition of I: 21
C-fraction I: 127
C-table I: 22—23 29 31
Calculation of Pade approximants, algebraic I: 8—14 43—48 66—68
Calculation of Pade approximants, numerical I: 61—68
Canterbury approximants II: 41—45
Capacity I: 274—284
Cardioid theorem I: 151
Carleman’s criterion for Hamburger series I: 223
Carleman’s criterion for Stieltjes series I: 200—202
Carleman’s criterion, application of II: 169
Cartan’s lemma I: 274
Cauchy — Binet formula I: 239—240
Cauchy — Jacobi problem II: 1
Characteristic function II: 128—132
Chebychev see “Tchebyscheff”
Chisholm approximants II: 41—43
Chordal metric I: 256—263
Clenshaw — Lord algorithm II: 58—60
Coefficient problem I: 65 II:
Collocation II: 138—145
Complementary error function I: 140 144
Continued fractions I: 103—157
Continued fractions, associated I: 127
Continued fractions, contraction of I: 127 147
Continued fractions, convergents of see “Convergents”
Continued fractions, corresponding I: 127
Continued fractions, definition I: 104—105 107
Continued fractions, divergence condition for I: 148
Continued fractions, elements of I: 104 119
Continued fractions, equivalence transformation of I: 105—107
Continued fractions, periodic I: 117 138
Continued fractions, recurrence relations for I: 106 109 135
Continued fractions, regular corresponding I: 127
Continued fractions, repeating I: 117—138
Continued fractions, summation formula I: 115—116
Continued fractions, terminating I: 104
Convergence in capacity I: 274—284
Convergence in measure I: 263—274
Convergence of row sequences I: 238 261
Convergents I: 104 111—112 117—119
Cordellier’s identity I: 88
Crank — Nicholson methods II: 145—153
Critical point methods I: 55—57 59—61 II: 178
D(m, n), definition of I: 162
D-log Pade approximants I: 55 II:
Dawson integral I: 141
Dawson integral, generalized II: 19
de Montessus’s theorem I: 241—252
de Montessus’s theorem, generalization of I: 254 II:
Defect I: 53—55 58—59
Deficiency index I: 20
Density function, construction of I: 180—181
Determinancy of moment problem I: 17 179 193 197—207
Determinantal formulas for Pade approximants I: 4—8 43—48
Determinantal identities for Stieltjes series coefficients I: 165—166
Determinantal inequalities I: 227 235
Determinantal inequalities for Hamburger series coefficients I: 227 235
Determinantal inequalities for Stieltjes series coefficients I: 208 209
Diagonal sequences I: 236
Diffusion processes II: 145—153
Divergence condition I: 148 156—157
Divided differences II: 2
Duality I: 31 236
Equicontinuity I: 174—176
Equicontinuous sequences I: 210 261
Equivalence transformation I: 105—106
Error formula for Pade approximants of Hamburger series II: 128—129
Error formula for Pade approximants of Stieltjes I: 185 189—193 II:
Error formula for Pade approximation I: 6 250
Error formula for Pade approximation, from variational principles II: 103—106
Error function I: 141 II:
Essential singularity I: 49
Euclidean algorithm I: 66 134—135
Euler — Maclaurin sum formula II: 130
Euler’s corresponding fraction I: 137—139
Euler’s function and series I: 17—18 200—202
Euler’s recurrence theorem I: 106
Euler’s summation formula I: 115—116
Existence of Pade approximants I: 27
Exploding vacuum II: 166—167
Exponential approximants II: 28
Exponential function, continued fractions for I: 139—143
Exponential function, Pade approximants for I: 8—14
Exponential function, Saff — Varga theorems for I: 229—233
Exponential integral, continued fraction for I: 140 144 II:
Exponential integral, first order I: 186
Extended Stieltjes series see “Hamburger series”
Factorization II: 43
Fisher approximants II: 45
Forward recurrence method I: 114—115
Frobenius definition I: 20 22
Frobenius identities I: 85 90—93
Gamma function, Binet’s formula for I: 202—205
Gammel — Guttman — Gaunt — Joyce approximants II: 33—36
Gammel’s counterexample I: 285
Gaussian quadrature II: 127—132
General C-fraction I: 129
Gnomic theory II: 74
Green’s functions, bound-state II: 113
Green’s functions, bound-state, partial wave, free II: 89
Green’s functions, bound-state, partial wave, Jost solution II: 90
Green’s functions, bound-state, partial wave, momentum space II: 114
Green’s functions, bound-state, partial wave, standing wave, free II: 89
Green’s functions, bound-state, S-wave, exponential potential II: 98
Green’s functions, bound-state, three-dimensional, free II: 81
Green’s functions, bound-state, three-dimensional, relativistic, free II: 108
Green’s functions, bound-state, three-dimensional, relativistic, standing wave, free II: 109
Green’s functions, bound-state, three-dimensional, standing wave, free II: 85
Gregory’s series I: 78 81
Hadamard’s determinant theorem I: 39—42 243
Hamburger functions as real J-fractions I: 225
Hamburger moment, definition of I: 208 222
Hamburger series, definition of I: 208 222
Hamburger’s theorem I: 221
Hankel determinant I: 7 41
Hankel matrix, condition number of I: 64—65
Hardy’s puzzle I: 78—80
Hausdorff measure, -dimensional I: 283
Hausdorff moment problem I: 193—196
Herglotz functions I: 225—227
| Hermite’s formula I: 250 II:
High field expansions II: 179
Hilbert space methods II: 46 68—72 103—107
Homographic invariants I: 32—33 II: 45 53
Hughes Jones approximants II: 43—45
Hyperbolic tangent I: 139 143—144
Hypergeometric functions I: 141—147 197—198
Hypergeometric functions, , Pade approximants of I: 43 47 142—147 154 II:
Hypergeometric functions, , Pade approximants of I: 43 47 141—147 154—155
Hypergeometric functions, , Pade approximants of I: 43—47 141—147 156
Identities for neighboring approximants I: 90—96
Inclusion regions I: 171 206
Incomplete gamma function I: 140 141 145 II:
Inequalities for density function II: 132—138
Inequalities for moments I: 186
Integer moment problem I: 196—197
Integral equations II: 64—79
Interlacing I: 168—169 210 227 II:
Invariance, homographic I: 32—33 II: 45 53
Inverse hyperbolic tangent I: 140 144
Inverse tangent I: 139 144 II:
J-fraction I: 128
Jost method II: 121—122
K-matrix II: 85 107 110—112
Kernels, compact II: 67—72
Kernels, compact, completely continuous II: 67—72
Kernels, compact, finite rank II: 65—67 72
Kronecker’s algorithm I: 66 II:
L-stability II: 151
Laguerre polynomials I: 186
Laguerre’s method II: 165
Lanczos biorthogonal method II: 76
Lanczos T-method II: 138—145
Laplace transform, inversion of II: 153—155
Lattice-cutoff field theory II: 176—178
Laurent’s theorem I: 49
Le Roy function II: 32
Lemniscates I: 274—284
Lippman — Schwinger equation II: 82—83 113
Logarithmic capacity I: 283
Markov problem II: 137
Matrix Pade approximants II: 50—56
Measure, convergence in I: 263
Meromorphic functions, convergence of sequences of I: 259
Mittag — Leffler star I: 50
Moment bounds I: 186
Moment method II: 46
Moment problems I: 178—179
Moment, definition of Hamburger I: 208 222
Moment, definition of Hausdorff I: 195
Moment, definition of Stieltjes I: 158
Moments, bounds for I: 186 II:
Multi-index I: 239
Multipoint Pade approximation I: 254 II:
Multipole I: 49
Multivariable approximants II: 40—50
N-point Pade approximants II: 1—31
Natural logarithm I: 140 144
Newton interpolating polynomials II: 2—3
Newton — Pade approximants II: 1—31
Nuttall’s compact form I: 16
Nuttall’s theorem I: 269
Orthogonal polynomials I: 82—86 209—210 255—256
Osculatory rational interpolation II: 1—31
P-fraction I: 130—131
Pade approximant I: 1—288 II:
Pade denominator, definition of I: 4
Pade equations I: 2—3
Pade numerator, definition of I: 6
Pade table I: 7—8 27—31
Pade — Tchebycheff approximants II: 56—62
Pade-Borel approximation II: 29—30
Pade-Fourier approximants II: 62—63
Pade-Frobenius definition I: 20 22
Pade-Legendre series II: 21—29
Parabola theorem for continued fractions I: 150
Parabola theorem of Saff and Varga I: 229—232
Paradiagonal sequences I: 236
Peres model II: 167
Perron’s counterexample I: 238
Pion — Pion scattering II: 172—176
Poles and zeros of Pade approximants I: 31 49—59 96—102 126 166 263
Poles and zeros of Pade approximants for Hamburger functions I: 209 227
Poles and zeros of Pade approximants for Stieltjes functions I: 186 193
Poloids II: 175
Polya frequency series I: 227—235
Pommerenke’s theorem I: 271
Potential scattering II: 79—126
Projection techniques II: 72—79
Prong method II: 43—44
Prym’s function I: 140 147
Q. D. algorithm I: 99 125—126
Q. D. algorithm for T-fractions II: 20
Q. D. algorithm, generalized II: 13—14
Q. D. Table I: 99 125—126
Quadratic approximants II: 36—37 49
Quadrature II: 127—132
Quantum theory, connection with II: 79—126
Quasi-analytic functions I: 51
Ratio method II: 33
Rational approximation II: 155—162
Rational interpolation II: 1—31
Ray sequences I: 191
Real J-fractions I: 128 225
Real symmetric functions I: 160—161 180
Regular C-fraction I: 127
Reliability I: 63 132 II:
Rhombus rule I: 77 81
Riccati equation, Pade approximants for II: 162—165
Riemann sphere I: 257
Root problem I: 96—102
Rouche’s Theorem I: 279
Runge’s theorem II: 158—159
S-fraction I: 127—128 165 206
S-matrix, partial wave II: 89 91
Saffs theorem I: 254
Scattering theory, quantum mechanical II: 80—92
Schwarz’s lemma I: 189 192
Sectorial theorem of Saff and Varga I: 229
Seidel’s theorem I: 148—150
Sequence, acceleration of convergence of I: 16—17 69—90
Sequence, column I: 30
Sequence, diagonal I: 17 32 35
Sequence, paradiagonal I: 30
Sequence, row I: 30
Series analysis I: 55—57 59—61 II:
Series, acceleration of convergence of I: 16—17 69—90
Shafer approximants II: 36—37
Single-sign potentials II: 106—114
Singular potentials II: 120—126
Spherical convergence I: 256—263
Star Identity I: 23
Stieltjes function I: 158 208
Stieltjes function, definition of I: 158 221
Stieltjes function, numerical calculation of I: 64
Stieltjes inversion formula I: 221
Stieltjes series I: 158 208
Stieltjes series, definition of I: 158 221
Stieltjes series, example of I: 161
Stieltjes series, inequalities for Pade approximants of I: 170
Stieltjes series, S-fraction for I: 165
Sturm sequence I: 167
Sylvester’s theorem I: 23 167
T-fractions I: 138 II:
T-matrix II: 81—82 103 172—176
T-matrix, partial wave II: 89
T-matrix, Toeplitz matrix I: 67
T-matrix, Totally monotone sequence I: 195
T-matrix, Totally positive series I: 228
T-matrix, Trudi’s theorem I: 42
|
|
|
Ðåêëàìà |
|
|
|