Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: The Quantum Theory of Fields. Vol. 1 Foundations
Àâòîð: Weinberg S.
Àííîòàöèÿ: In The Quantum Theory of Fields, Nobel Laureate Steven Weinberg combines his exceptional physical insight with his gift for clear exposition to provide a self-contained, comprehensive, and up-to-date introduction to quantum field theory.
This is a two-volume work. Volume I introduces the foundations of quantum field theory. The development is fresh and logical throughout, with each step carefully motivated by what has gone before, and emphasizing the reasons why such a theory should describe nature. After a brief historical outline, the book begins anew with the principles about which we are most certain, relativity and quantum mechanics, and the properties of particles that follow from these principles. Quantum field theory emerges from this as a natural consequence.
The author presents the classic calculations of quantum electrodynamics in a thoroughly modern way, showing the use of path integrals and dimensional regularization. His account of renormalization theory reflects the changes in our view of quantum field theory since the advent of effective field theories.
The book's scope extends beyond quantum electrodynamics to elementary particle physics, and nuclear physics. It contains much original material, and is peppered with examples and insights drawn from the author's experience as a leader of elementary particle research. Problems are included at the end of each chapter.
This work will be an invaluable reference for all physicists and mathematicians who use quantum field theory, and it is also appropriate as a textbook for graduate students in this area
ßçûê:
Ðóáðèêà: Ôèçèêà /Êâàíòîâàÿ òåîðèÿ ïîëÿ /Ó÷åáíèêè /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1996
Êîëè÷åñòâî ñòðàíèö: 609
Äîáàâëåíà â êàòàëîã: 09.10.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
decay 127 130—1
molecular spectrum 29
particles 207
particle 159—60 207
group 88
baryon 165
function 202
function 276
meson 225
meson 227
-mesons 165 225 227 469
problem 127
Aaron, R. 470
Abelian groups, defined 55
Absorption of photons 18
Accidental symmetries 529—31
action 299 307
Aharony, A. 168
Aitken, A. C. 106
Alpha decay 160
Amado, R. D. 470
Anderson, C. D. 12 30 43 45
Annihilation and creation operators 16 19—20 23—4 26—8 169 173
Anomalous Zeeman effect 5
Antiparticles 13—14 23—8 104 149—50 199 567
Antiunitary and antilinear operators, defined 51
Anyons 420
Aramaki, S. 39
Argyres, P. C. 257
Artin, E. 424
Auxiliary fields 302—3 314
Axial gauge 346
Bagger, J. 338 532
Bailey, J. 498
Bakamijian, B. 189
Bargmann, V. 106
Baryon number, defined 122
Belinfante tensor 316
Belinfante, F. J. 44 316 338
Berezin integration, defined 403
Berezin, F. A. 403 404 424
Bergmann, P. G. 335
Beta decay 23 29 127 146 228 519
Bethe — Salpeter equation 560
Bethe, H. 29 33 36 45 47 560 563 593 596
Beyer, R. T. 39 43
Bhabha (electron—positron) scattering 29
Bhabha, H. J. 29 45
Bjorken, J. D. 532
Blackett, P. M. 13
Bloch, F. 33 46 562
Bogoliubov, N. N. 512 532
Bohr, N. 3 11 19 32 42 44 168 198 256
Boltzmann H-theorem 151
Boosts, defined 61
Born approximation 115 156
Born, M. 3 15 16 17 18 19 23 25 40 42 43 46 115 166 292
Bose — Einstein statistics 11
Bound states (see “Composite particles”)
BPHZ prescription 512—13
Braid group 420
Breit — Wigner formula 162—3
Breit, G. 36 48 162 167 168
Bremstrahlung 29
Broken symmetry 443 451
Brown, G. E. 596
Brown, L. 39 40 45 46 167 532
Burgoyne, N. 257
Butler, C. C. 30 45 123 167
Canonical commutation and anticommutation relations 16 19—22 293—8 529
Canonical transformations 329
Cao, T. Y. 39
Carlson, J. F. 29 30 32 45
Cartan, E. 256
Casimir effect 297
Casimir, H. B. G. 338
Cassen, B. 167
Causality 145 198 463
Center-of-mass frame 139
Central charges 83
Chadwick, J. 45
Charge (see “Electric charge”)
Charge conjugation (C) for photons 427—8 (also see “Specific particle types”)
Charge conjugation (C), accidental symmetry 521 530—1
Charge conjugation (C), defined 121 131—2
Charge conjugation (C), intrinsic charge conjugation phases 131 (also see “Specific particle types”)
Charge conjugation (C), non-conservation 132 (also see “Specific particle types”)
Charge conjugation (C), transformation of creation operators 177 (also see “Specific particle types”)
Charge conjugation (C), transformation of Dirac fields 226—7 (also see “Specific particle types”)
Charge conjugation (C), transformation of fermion bilinears 229 (also see “Specific particle types”)
Charge conjugation (C), transformation of general irreducible fields 241—2 (also see “Specific particle types”)
Charge conjugation (C), transformation of scalar fields 206 (also see “Specific particle types”)
Charge conjugation (C), transformation of vector fields 213 (also see “Specific particle types”)
Chew, G. 47 471
Chew-Frautschi plot 469 471
Chinowsky, W. 167
Chiral transformation 520
Christenson, J, H. 106 167
circular polarization 359
Clebsch—Gordan coefficients 124 152 154 156 233—4 242 569
Clifford aigebra 214
Closed p-forms, defined 369
Cluster decomposition principle 169 177—89 197 259
Cohen, R. S. 44 256
Coherent states 189
Collins, R. D. B. 471 532
COLOR 549
Compact and non-compact groups 231
Composite particles 110 461—2
Compton (electron-photon) scattering 29 362—9
Compton, A. H. 41 362 364 504
Condon, E. U. 167
Connected amplitudes 178—82 270 282 286 389 413
Conservation laws for angular momentum 118 (also see “Specific symmetries and conserved quantities”)
Conservation laws for charge 119 199 427
Conservation laws for current 212 307 478 586
Conservation laws for energy and momentum 117—18 425—7
Conservation laws limitations 253 537—8
Constraints 325—31
Constraints in electrodynamics 344 346—7
Conversi, M. 30 45
Cosmic rays 29 123
Coulomb energy 350 353 355—6 560
Coulomb gauge 251 346—50 365
Counterterms in quantum electrodynamics 472—3
CP-invariance for degenerate multiplets 104
CP-invariance, non-conservation in decay 132—3
CPT-invariance 104 133 244—6 459
Creation operators (see “Annihilation and creation operators”)
Crichton, J. R. 189
Cronin, J, W. 106 132 167
Cross sections, defined 137—9
Cross sections, high energy limit 158—9
Cross sections, partial wave expansions 155—6
Crossing symmetry 269 467 554
Cumulants 178
Curie-Joliot, I. 45
Dalitz Plot 141
Dalitz, R, H. 141 168 563
Dancoff, S. M. 33 34 46
Dangerous states 550—2
Darwin, C. G. 10 41 42 596
Davisson, C. J. 3 40
de Broglie, L. 3 40
de Kronig, R. 469 471
De Rham cohomology 370
De Witt, C. M. 377 418 424.
Deans, W, M. 41
Decay rates, general formula 136—7
Dedijer, S. 257
Density matrix 360
Deser, S. 563
Desiderio, A. M. 596
DeWitt, B. S. 39 424
Differential forms (see “p-forms”)
Diffraction scattering 148—9 158
Dimensional regularization 449 477—80 497
Dimensionality, of fields and couplings 502 519 525—7
Dirac brackets 328—31 332—7
Dirac brackets in electrodynamics 347—9
Dirac equation 1 6—14 225 565—72
Dirac matrices 8—9 214—19
Dirac matrices, slash notation, defined 358
Dirac matrices, traces 361 372—4
Dirac representation of homogeneous Lorentz group 213—19
Dirac, P. A. M. 4 5 6 7 8 9 10 11 12 13 14 18 19 22 23 24 27 28 29 32 33 34 39 40 41 42 43 44 46 47 49 105 200 213 218 256 292 325 328 329 330 335 345 376 424 457 470 489 565 566 567 596
Dispersion relations 460 462—9
Distorted wave Born approximation 146—7
Donoghue, J. F. 533
Dotted and undotted indices 230
Drell, S. D. 532
Dresden, M. 61
Drinkwater, J. W. 47
Druehl, K. 424
Duality 232 371
Dyson series 144 259—60
Dyson, F. J. 37 48 106 144 168 258 259 287 29/ 376 499 532
Eckart 153 156 162 165
Eclipsing binaries 368
Edmonds, A. R. 106 167 165 257 596
Effective field theories 499 523—5
Ehrenfest, P. 15 29 43 45
Einstein, A. 12 13 18 19 43 55 518
Electric charge 341
Electric charge radius, defined 493
Electric charge, conservation 122 537
Electric charge, renormalization 342 442—8 473 480—3
Electric dipole moments 81 521
Electron, charge radius 493
Electron, classical theory 31 369 496
Electron, magnetic moment 6 10 14 36 457 468 520
Electron, spin 6—9
Elliptic polarization 360
Elsasser, W. 3 40
Energy shifts of atomic states 31—2 574
Energy shifts of atomic states, ls energy shifts 594 (also see “Lamb shift” “Uehling “Muonic
Energy-momentum tensor 310—12
entropy 151
Epstein, S. 46
Equivalence principle 537
Erickson, G. W. 498
Euclidean path integrals 384
Euler constant 479 497
Euler — Lagrange equations 300
Euler, H. 32 46 523 524 526 533
Exact p-forms 369
Excitation energies, in hydrogen 592—3
Exclusion principle 11
Exterior derivatives 369
External fields 266 287—90 412—13 556—62 572—8
Fabri, E. 168
Faddeev equations 188
Faddeev, L. D. 190 376 378 424
Feenberg, E. 167 168
Feinberg, G. 167 530 533
Feinberg, J. 335
Fermi — Dirac statistics 12 171—2 267—70 418—20
Fermi, E. 11 19 23 39 421 44 292
Ferretti, B. 767
Feynman diagrams 36—7 259—91
Feynman diagrams for electrodynamics 355—8
Feynman gauge 355 417
Feynman parameters 474 486 497
Feynman, R. P. 33 36 37 38 47 45 259 276 280 286 353 354 355 360 375 376 377 400 411 413 417 423 424 426 430 459 472 474 486 495 559 572
Field equations 200 211—12 239
Field renormalization 331—2 436—42 452 461 473 479 484 543—4
Field-translation-invariant scalar theory 521—3
Fields (see “Quantum fields”)
Fierz, M. 20 40 44 46 47 257
Fine structure 4—6 570
Fine structure constant 2 5
First class constraints (see “Constraints”)
Fitch, V. L. 106 133 167
Flanders, H. 106 375
Flavors (of leptons) 529
Floating cutoff 525—8
Fock, V. 22 23 41 44 375
Foley, H. M. 45
Forests 512—13
form factors 452—7 485—93 580—2
Frautschi, S. C. 471 562
Fredenhagen, K. 424
French, J. B. 35 38 47 593 596
Friedman, J. I. 106 167
Froehlich, H. 48
Froissart bound 159
Froissart, M. 168
Fukuda, H. 47
Functionals, notation 299
Furry's theorem 428—9 509
Furry, W. H. 23 27 28 32 44 46 428 470
Gaberdiel, R. 424
Galilean invariance 62 145 217—18
Gamow, G. 7 39 42
Garwin, R. 106 167
Gasser, J. 533
Gauge transformations 251—2 339—43 345 370 448—52 “Coulomb “Temporal “Axial “Unitarity “Feynman
Gaussian Integrals 420—3
Gell-Mann, M. 123 132 167 291 477 556 563
General relativity 255 312 316 369 518—19 521
Generators of symmetries 307—14
Georgi, H. 257
Germer, L. H. 3 40
Gerstein, I. S. 424
Glimm, J. 423
Global symmetries, defined 307
Gluons 549
Goldberger, M. L. 166 463 471 556 563
Goldstone, J. 178 189
Gordon, W. 4 7 10 13 25 27 41 42 200 211 239 277 596
Goudsmit. S. 5 10 41
Grassmann variables, defined 401
Graviton 73—4 253 521 537 548
Green, M. B. 375
Grisaru, M. 563
Grotch, H. 596
Groups, defined 52 (also see “Abelian groups” “Homotopy “Lie “Little “Representations” “Semi-simple
Gudehus, T. 257
Guersey, F. 106
Haag, R. 424
Haenscb, T. W. 596
Hafstad, L. D. 767
Hahn, Y. 532
Halter, J. 533
Hamiltonian for complex scalar field 22
Hamiltonian for Dirac equation 8
Hamiltonian for electrodynamics 349—50
Hamiltonian for free particles 176
Hamiltonian for interacting Dirac field 323
Hamiltonian for interacting scalar fields 199 302
Hamiltonian for interacting vector field 321
Hamiltonian for one-dimensional scalar field 15—17
Harvey, J. 533
Hawking, S. W. 533
Heisenberg picture 109 288 297 425
Heisenberg, W. 3 4 10 15 16 17 20 21 24 25 29 32 33 40 41 42 43 44 45 46 109 766 292 519 532 533
Heitler, W. 29 45 45
Helicity, defined 72
Helicity, limitations for massless particle fields 253—4
Helicity, limited to integers and half-integers 90
Ðåêëàìà