Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: The Quantum Theory of Fields. Vol. 1 Foundations
Àâòîð: Weinberg S.
Àííîòàöèÿ: In The Quantum Theory of Fields, Nobel Laureate Steven Weinberg combines his exceptional physical insight with his gift for clear exposition to provide a self-contained, comprehensive, and up-to-date introduction to quantum field theory.
This is a two-volume work. Volume I introduces the foundations of quantum field theory. The development is fresh and logical throughout, with each step carefully motivated by what has gone before, and emphasizing the reasons why such a theory should describe nature. After a brief historical outline, the book begins anew with the principles about which we are most certain, relativity and quantum mechanics, and the properties of particles that follow from these principles. Quantum field theory emerges from this as a natural consequence.
The author presents the classic calculations of quantum electrodynamics in a thoroughly modern way, showing the use of path integrals and dimensional regularization. His account of renormalization theory reflects the changes in our view of quantum field theory since the advent of effective field theories.
The book's scope extends beyond quantum electrodynamics to elementary particle physics, and nuclear physics. It contains much original material, and is peppered with examples and insights drawn from the author's experience as a leader of elementary particle research. Problems are included at the end of each chapter.
This work will be an invaluable reference for all physicists and mathematicians who use quantum field theory, and it is also appropriate as a textbook for graduate students in this area
ßçûê:
Ðóáðèêà: Ôèçèêà /Êâàíòîâàÿ òåîðèÿ ïîëÿ /Ó÷åáíèêè /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1996
Êîëè÷åñòâî ñòðàíèö: 609
Äîáàâëåíà â êàòàëîã: 09.10.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Hepp, K. 512 532
Herzberg, G. 45
Heydenberg, N. 167
Hibbs, A. R. 423
Hilbert space, defined 49
Hocking, J. G. 106
Hoddeson, L. 39 40 46 167
Hole theory 12 29 31
Homotopy groups and classes 89—90 96—100 419—20
Homotopy groups and classes, defined 100
Howard, J. C. 470
Hubbard — Stratonovich transformation 461
Hubbard, J. 461 470
Huber, A. 596
Huff, R. W. 596
Hugenholtz, N, M. 178 790
Hypercharge 123
Hyperons 123
Hyperons, discovered 30
Induced emission of photons 18
Induced representations 65
Infield, L. 46
Infinities (see “Ultraviolet divergences” “Infrared
Infrared divergences 32—3 491 496 539—53
Inoenue — Wigner contraction 62
Inoeu, T. 45
Inonue, E. 62 105
Interaction picture 143 287
Interaction picture for derivative coupling 318—20
Interaction picture for Dirac field 323—5
Interaction picture for electrodynamics 353
Interaction picture for interacting scalar field 304—5
Interaction picture for vector field 320—3
Internal symmetries 121—2
Invariant subgroups and subalgebras 70 88
Irreducible representations, defined 64
Irrelevant couplings 503
Isospin (isotopic spin) 123
Israel, W. 533
Ito, D. 45
Jackiw, R. 40 424
Jackson, J. D. 471
Jacobi identity 83
Jaffe, A. 423
Jammer, M. 39
Jauch, J. M. 257
Jets 550 552
Johnson, W. R. 596
Joliot, F. 45
Joos, H. 257
Jordan, P. 3 10 15 16 17 18 19 23 25 40 41 431 292
Jost, R. 258
Jouvet, B. 470
Julian, R. S. 48
K mesons 123 132—3
K mesons, discovered 30
Kabir, P. 530 532
Kaellen, G. 457 470
Kaellen-Lehmann representation 457—62
Kahn, B. 48
Kaiser, G. 257
Kamefuchi, S. 424 532
Kanesawa, S. 48
Kemmer, N. 31 46
Kinetic theory 150—1
Kinosbita, T. 563 596
Klein — Gordon — Schrodinger equation 1 13 21
Klein, O. 4 7 13 25 27 29 41 44 200 211 239 277 368 375
Koba, Z. 46 48
Kockel, B. 31 46 533
Kollath, R. 168
Kramers degeneracy 81
Kramers — Kronig relation 469
Kramers, H. A. 35 47 81 106 168 469 471
Kroll, N. M. 38 47 593 596
Kubo, R. 190
Kusch, P. 48
Lagrangians 20 297—306
Lagrangians for complex scalar field 21
Lagrangians for interacting scalar field 302
Lagrangians integration by parts 305—6
Lagrangians irregular 326
Laidlaw, M. G, G. 418 424
Lamb shift 34—6 484 578—94
Lamb, W. E. 35 36 38 47 48 593 596
Land , A. 41
Landau, L. D. 106 168 418 452
Lang, S. 424
Langer, J. S. 596
Lattes, C. 30
Lederman, L. 106 167
Lee — Nauenberg theorem 549—53
Lee, T D. 106 127 132 167 178 189 228 424 549 563
Legendre transformations 297 301
Lehmann, H. 438 457 463 470
Leinaas, J. M. 424
Lepton number 122 530
Leptons 472
Leutwyler, H. 533
Lewis, H. W. 46
Lie groups 53—5
Liebfried, D. 596
Lifshitz, E. M. 106 168
linear polarization 359
Lippmann — Schwinger equation 111 142
Lippmann, B. 111 166
Little groups 64-6
Little groups, 69—73
Little groups, 68—9
Liu, H. H. T. 498
Local Symmetries 342 (also see “Gauge transformations”)
Local symmetries for different momenta 65—6
Local symmetries for massless particles 248
Local symmetries, defined 64
London, F. 375
Loops 186—7 270 282—3 358 413
Lorentz (or Landau) gauge 212 346 418
Lorentz transformations action on creation operators 177
Lorentz transformations action on general states 57
Lorentz transformations action on one-particle states 62—73
Lorentz transformations in canonical formalism 314—18
Lorentz transformations in off-shell matrix elements 427
Lorentz transformations in perturbation theory 144—5 277—9 259
Lorentz transformations of cross-sections and decay rates 138
Lorentz transformations of S-matrix 116—21
Lorentz transformations, defined 55—7
Lorentz transformations, homogeneous Lorentz group, defined 57
Lorentz transformations, homogeneous Lorentz group, general representations 229—33
Lorentz transformations, Poincare algebra 58—61
Lorentz transformations, Poincare group, defined 57
Lorentz transformations, proper orthochronous Lorentz group 58
Low, F. E. 291 556 563
LSZ theorem (see “Reduction formula”)
Ludwig, G. 40
Lueders, G. 245 257
Lundeen, S. R. 596
Lyubarski, G. Ya. 257
M-matrix, defined 117
Mackey, G. W. 105
Magnetic moments of spin 1/2 particles 456—7 485—90 520 555—6 “Muon”)
Mailer, C. 29 45 46 166
Majorana fermions 226 242
Mandelstam variables 515
Mandelstam, S. 424
Many time formalism 22
Marginal couplings 503
Marshak, R, E. 38 45
Maskawa, T. 329 330 338
Mass renormalization 439—42 473 495—6 587—9
Matrix mechanics 3—4
Matthews, P. T. 532
Maxwell equations 1 252 339 342 370
Mayers, D. F. 596
Mehra, J 39 42
Meller (electron-electron) scattering 29
Michelson, A. A. 41
Miller, A. L. 39 44 498
Miyamoto, Y. 47
Momentum operator 61 310—11
Muon 38
Muon, discovered 30
Muon, magnetic moment 489—90 520
Muonic atoms 483—4
Myrheim, J. 424
Nafe, J. E. 48
Nakajima, H. 329 330 338
Nappi, C. R. 257
Nash, C. 106
Nauenberg, M. 549 563
Neddermeyer, S. H. 30 45
Negative energy ‘states’ 10—14 23—7 567
Nelson, E. B. 48
Neutron 29
Neutron, neutron scattering on complex nuclei 157 160
Neutron-proton scattering 158
Newton, R. G. 166
Ne’eman, Y. 123 167
Nishina, Y. 29 44 368 375
Noether’s theorem 307
Non-compact groups (see “Compact and non-compact groups”)
Non-linear -model 337 377 392—3
Nordheim, L. 30 45
Nordsieck, A. 33 46 562
Normal ordering 175 200 262
Novikov, V. 533
Nuclear forces 29—30 434—6
Occhialini, G. P. S. 13 30 45
Ohnuki, Y. 424
Old-fashioned perturbation theory (see “Perturbation theory”)
Omnes, R. 471
One-particle-irreducible, defined 439
Oppenheimer, J. R. 12 23 27 28 29 30 31 35 37 38 43 44 45 46
Optical theorem 148
Osterwalder — Schrader axioms 384 424
Osterwalder, K. 424
Overlapping divergences 511—15
p-forms 369—72
Pachucki, K. 596
Pair production 29
Pais, A. 39 132 167
Pancini, E. 30 45
Parasiuk, O. 512 532
Parastatistics 420
Parity and space inversion (P) of bound electron states 568—9 586
Parity and space inversion (P), accidental symmetry 521 530—1
Parity and space inversion (P), defined 58 (see also “Specific particle types”)
Parity and space inversion (P), intrinsic parities 125—7 (see also “Specific particle types”)
Parity and space inversion (P), non-conservation in weak interactions 127 (see also “Specific particle types”)
Parity and space inversion (P), transformation of and 74—6 (see also “Specific particle Types”)
Parity and space inversion (P), transformation of creation operators 177 (see also “Specific particle types”)
Parity and space inversion (P), transformation of Dirac fields 221 224—5
Parity and space inversion (P), transformation of general irreducibie fields 239—40 (see also “Specific particle Types”)
Parity and space inversion (P), transformation of one-particle states 76—9 103
Parity and space inversion (P), transformation of scalar fields 205—6 (see also “Specific particle types”)
Parity and space inversion (P), transformation of vector fields 213 (see also “Specific particle types”)
Partial wave expansions 151—9
Paschen, F. 41
Pasternack, S. 47
Path integrals 259 376—7 524
Path integrals for derivative coupled scalars 391—2
Path integrals for fermions 399—13
Path integrals for massive vector fields 393—5
Path integrals for non-linear -model 392—3
Path integrals for quantum electrodynamics 413 18
Path integrals for S-matrix 385—9
Path integrals Lagrangian version 389—95
Path integrals used to derive Feynman rules 395—8
Path integrals, derivation 378—84
Pauli matrices, defined 217
Pauli term 14 517 520
Pauli — Villars regulator 486 494
Pauli, W. 3 11 14 19 20 21 22 23 24 26 28 31 40 42 45. 47 245 257 292 494 495 517
Peierls, R. E. 44 46 47 168
Pendleton, H. 563
Perlmutter, A. 257
Perturbation theory, old-fashioned 142 259 549 564 585—6 593
Perturbation theory, time-dependent 142—5 (also see “Dyson series” “Feynman “Path
Petermann, A. 498
Phase shifts 129—30 155
Phase space factors 139—41
Photon 3
Photon, charge conjugation phase 229
Photon, helicity and polarization 73—4 250—1 359—61 368
Photon, masslessness 343 452 477
Photon, photon-photon scattering 32 509 523—5
Photon, propagator 353—5 (also see “Soft photons” “Quantum
Piccioni, O. 30 45 167
Pion-nucleon coupling constant 435
Pions 13 38 435—6 521
Pions, decay 131
Pions, decay 127 7
Pions, intrinsic charge-conjugation phase of 131 229
Pions, intrinsic parity 127
Pions, prediction and discovery 30
Pions, scattering on nucleons 463 469
Pipkin, F. M. 596
PJaczek, G. 168
Podolsky, B. 22 44
Poincare group and algebra (see “Lorentz transformations”)
Poincare‘s theorem 99 370
Poisson brackets, defined 327
Polar decomposition theorem 88 530
Polarization, massive spin one particle 209—10 212
Polarization, masslessness 343
Polarization, photon 73—4
Polchinski's theorem 526—8
Polchinski, J. 424 526 533
Poles in scattering amplitudes 428—36 554 564
Pomeranchuk's theorem 468
Pomeranchuk, I. Ja. 468 469 477
Popov, V. N. 377 424
Positivity of energy 75—6 302
Positron 12—13 567—8 585
Positronium 227
Powell, C. F. 30 45
Power counting theorem 505
Present, R. S. 767
Primary constraints (see “Constraints”)
Principal value function 113
Probabilities in quantum mechanics 7 27—8 33 50
Projective representations 53 81—91 96—100
Propagators 262 274—80 397—8 506 574—8
Proton charge 445
Proton charge radius 38 594
Proton form factors 457
Proton identified as holes 12
Proton in nuclei 29
PT-non-conservation 130—1
Quantum chromodynamics 123 531 549
Quantum electrodynamics 29 31—8 339—62 413—18 472—97 503 507—15 529—31 564—94 “Electron” “Photon” “Gauge “Ultraviolet “Infrared
Quantum fields, Dirac 23—4 219—29
Quantum fields, early theory 15—31
Quantum fields, free fields 191—200
Quantum fields, general quantum fields 233—44
Quantum fields, massless particles 246—55
Quantum fields, redefinitions 331—2
Quantum fields, scalar 21—2 24—8 201—6
Quantum fields, uniqueness of irreducible fields 238
Quantum fields, vector 207—12
quantum mechanics 49—50
Ðåêëàìà