Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations
Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The Quantum Theory of Fields. Vol. 1 Foundations

Àâòîð: Weinberg S.

Àííîòàöèÿ:

In The Quantum Theory of Fields, Nobel Laureate Steven Weinberg combines his exceptional physical insight with his gift for clear exposition to provide a self-contained, comprehensive, and up-to-date introduction to quantum field theory.
This is a two-volume work. Volume I introduces the foundations of quantum field theory. The development is fresh and logical throughout, with each step carefully motivated by what has gone before, and emphasizing the reasons why such a theory should describe nature. After a brief historical outline, the book begins anew with the principles about which we are most certain, relativity and quantum mechanics, and the properties of particles that follow from these principles. Quantum field theory emerges from this as a natural consequence.
The author presents the classic calculations of quantum electrodynamics in a thoroughly modern way, showing the use of path integrals and dimensional regularization. His account of renormalization theory reflects the changes in our view of quantum field theory since the advent of effective field theories.
The book's scope extends beyond quantum electrodynamics to elementary particle physics, and nuclear physics. It contains much original material, and is peppered with examples and insights drawn from the author's experience as a leader of elementary particle research. Problems are included at the end of each chapter.
This work will be an invaluable reference for all physicists and mathematicians who use quantum field theory, and it is also appropriate as a textbook for graduate students in this area


ßçûê: en

Ðóáðèêà: Ôèçèêà/Êâàíòîâàÿ òåîðèÿ ïîëÿ/Ó÷åáíèêè/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 609

Äîáàâëåíà â êàòàëîã: 09.10.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Quarks      217 531
Rabi, I. I.      36 48
Racah, G.      45
Radiative corrections      (see “Renormalization” “Quantum “Ultraviolet “Infrared “Self-energy “Vertex “Vacuum “Soft
Ramsauer      165
Ramsauer — Townsend effect      165
Rarita — Schwinger field      232 423
Rarita, W.      232 257
Rates, general formuia      134
Rays, defined      49—50
Rechenberg, H.      45
Reduction formula      436—8
Redundant couplings      331—2 522—3
Regge trajectories      468—9
Regge, T.      468 469 477
Relativistic wave equations      1—14
Relevant couplings      530
Renormalizability      37 499 502—3 516—25
Renormalization      34—8 506—16 “Field “Mass
Renormalization group      490 516 525
Representations of groups, defined      53
Representations of homogeneous Lorentz group      229—33
Resonances      159—65
Retherford, R. C.      47
Richardson      O. 47
Riemann — Lebesgue theorem      181
Roberts, J. E.      424
Robertson, P. P.      42
Rochester, G. D.      30 45 123 767
Rohrlich, F.      257
Rose, M. E.      46 106 167 168 257 596
Rosenbluth formula      457
Rosenbluth, M. N.      457 470
Rosenfeld, L.      19 44 198 256 338
Rotation matrices $(D^{j}_{\sigma'\sigma}(R))$      68
Rueger, S. M.      424
Rydberg unit (Ry), defined      593
S-matrix      4 33
S-matrix, C, CP and CPT      131—4
S-matrix, defined      113
S-matrix, internal symmetries      121—4
S-matrix, Lorentz invariance      116—21
S-matrix, parity      124—7
S-matrix, PT      130—1 133
S-matrix, S-Operator      114
S-matrix, time reversal      127—30
S-matrix, unitarity      113—14 147—51 “M-matrix”)
Sakata, S.      45 532
Sal peter, E. E.      560 563
Salam, A.      39 42 512 532
Sapirstein, J. R.      596
Scattering amplitude (f)      148 153—4 466—7
Scattering lengths, defined      157
Schaefer, G. W.      596
Schearer, J. F.      47
Schiff, L. I.      41 43 168 563 596
Schmidt-Kaler, F.      596
Schrader, R.      424
Schroedinger picture      109
Schroedinger, E.      3 4 6 13 27 47 109
Schroer, B.      257
Schubert, K. R.      767
Schur, I.      257
Schwarz, J. H.      375
Schweber, S. S.      39 40
Schwinger action principle      288
Schwinger terms      449
Schwinger, J.      14 33 35 36 37 38 40 43 46 47 48 111 766 232 257 259 291 375 376 424 470 489 498
Screaton, R.      477
Second class constraints      (see “Constraints secondary constraints” “Constraints”)
Seiler, R.      257
Self-energy functions $(\Pi^{*}, \Sigma^{*})$      439 473—80 493—6 508—9 512—15 575—9 583—4
Semi-simple Lie groups and algebras, defined      70 86
Sen, S.      106
Separable interactions      165
Serber, R.      46 48
Shelter Island Conference (1947)      34—8
Shifman, M. A.      555
Simply connected spaces, defined      84
SL(2, C) group      87 90
Slater, J, C.      42
Soft photons      534—48 553—6
Sommerfield, A.      3 5 6 11 47
Spaarnay, M. J.      338
Space inversion      (see “Parity and space inversion”)
Spectral functions      (see “Kaellen-Lehmann representation”)
Spherical harmonies      153 569
Spin matrices, defined      230
Spin sums      210 224 236—7 252 360—1 365 545
Spin(d) group      90
Spin-statistics connection      238
Spontaneous emission of photons      17—19 590
Stachel, J.      44 256
Standing wave states      166
Steinberger, J.      167
Sterman, G.      563
Stevenson, E. C.      30
Stoner, E. C.      42
Stora, R.      39
Strangeness and strange particles      123 (see “K mesons” “Hyperons”)
Stratonovich, R. L.      461 470
Streater, R. F.      257 258
Street, J. C.      30
String theory      1 15 244 371 525
Strong interactions      30
Structure constants, defined      54
SU(2) group      88 123 130
SU(3) symmetry      123
Subtractions in dispersion relations      460 465
Superficial divergences      500—2 510
Superrenormalizable interactions      503 507
Superselection rules      53 90—1
Supersymmetry      325 506 526
Suura, H.      498 562
Swieca, J. A.      257
Symanzik, K.      438 464 470
Symmetries      50—5 91—6 306—14 425 “Groups” “Lorentz “Parity” “Charge “Time “Internal “Isospin” “SU(3)”)
T-matrix      111 116 141—2 152 549
Takahashi, Y.      447 470
Tamm, L.      12 43 44 375
Tate, J. E.      424
Tatti, T.      48
Telegdi, V. L.      106 167
Temporal gauge      346
Thirring, W.      463 477
Thomas, L. H.      42 189
Thomson scattering      369 556
Thomson, J. J.      369
Threshold behavior      157-8
Time reversal (T) consequences for S-matrix      127—30
Time reversal (T), defined      58
Time reversal (T), non-conservation      134
Time reversal (T), transformation of $J_{\mu\nu}$ and $P_{\mu}$      74—6
Time reversal (T), transformation of creation operators      177
Time reversal (T), transformation of degenerate multi-plets      100—4
Time reversal (T), transformation of Dirac fields      227—8
Time reversal (T), transformation of general irreducible fields      242—3
Time reversal (T), transformation of one-particle states      77-81
Time reversal (T), transformation of scalar fields      206
Time reversal (T), transformation of vector fields      213
Time-ordered products, defined      143 280
Titchmarsh, E. C.      190
Toll, J. S.      477
Tomonga, S.-I.      36 37 38 40 46 47 48 259 376
Topology of Lorentz and rotation groups      86—90 (see also “Homotopy groups” “Simply “de
Townsend      165
Traces      (see “Dirac matrices”)
Tree graphs, defined      283
Tung, W.-K.      106
Turlay, R.      106 167
Turnbull, H. W.      106
Tuve, M. A.      167
Two-cocycles, defined      82
Uehling effect      34 484 581
Uehling, E. A.      34 46 47 484 498
Uhlenbeck, G. E.      5 41
Ultraviolet divergences      31—8 476—7 482-3 485 491 494—7 500—5
Umezawa, H.      532
Unitarity gauge      346
Unitarity of S-matrix      113—16 129 147—51 155 161 521
Universal covering group      90
Vacuum energy      24 26
Vacuum polarization      32 34 473—85 581
Vacuum state      24 27 176
Vainshtein, A. I.      533
Van der Waerden, B.      1 40 43 257
Vaughn, M. J.      470
Velo, G.      257
Veltman, M.      477 498
Vertex function $(\Gamma_{\mu})$      446 485—8 507—8 579—80
Villars, F.      494 498
Waller, I.      31 45
Ward and Ward — Takahashi identities      445—8 476 508 511
Ward, J. C.      447 470
Watson's theorem      130
Watson, K. M.      130 166 167
Wave packets      109—10
Webb, N.      45
Weinberg, S.      40 42 47 105 167 168 190 256 257 338 375 424 470 471 532 533 563
Weinrich, M.      106 167
Weisskopf, V. F.      24 26 28 31 32 34 35 37 40 43 44 45 46 47 593 596
Weitz, M.      596
Wentzel, G.      40 42 46
Wess, J.      338 532
West, T.      375
Weyl, H.      12 43.
Wheeler, J. A.      4 33 46 47 166
Whittaker, E.      40
Wichmann, E. H.      189 256 498
Wick rotation      475—6
Wick's theorem      261
Wick, G. C.      105 291 475 486 497 498
Wightman, A. S.      105 257 258
Wigner rotation      68—73
Wigner three-j symbols      237
Wigner — Eckart theorem      153
Wigner, E. P.      19 39 42 43 44 51 62 68 91 93 100 103 104 105 106 108 153 156 162 168 236
Wilczek, F.      424
Williams, E. J.      563
Williams, R. C.      47
Williams, W. E.      47
Wilson's renormalization method      525—8
Wilson, W.      41 525 528 533
Witten, E.      40 257 375
Wu, C. S.      106 127 167
Yang, C. N.      106 127 132 167 168 178 189 228 257 375
Yang. C R.      168
Yennie, D. R.      562 596
Yukawa, H.      30 45 159 436 470
Zacharias, J. R.      48
Zakharov, V. I.      533
Zimmerman, W.      438 463 470 512 532
Zumino, B.      257
Zwanziger, D.      257
‘In’ and ‘out’ states      107—12 116
’t Hooft, G.      377 477 424 498
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå