Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: The Quantum Theory of Fields. Vol. 1 Foundations
Àâòîð: Weinberg S.
Àííîòàöèÿ: In The Quantum Theory of Fields, Nobel Laureate Steven Weinberg combines his exceptional physical insight with his gift for clear exposition to provide a self-contained, comprehensive, and up-to-date introduction to quantum field theory.
This is a two-volume work. Volume I introduces the foundations of quantum field theory. The development is fresh and logical throughout, with each step carefully motivated by what has gone before, and emphasizing the reasons why such a theory should describe nature. After a brief historical outline, the book begins anew with the principles about which we are most certain, relativity and quantum mechanics, and the properties of particles that follow from these principles. Quantum field theory emerges from this as a natural consequence.
The author presents the classic calculations of quantum electrodynamics in a thoroughly modern way, showing the use of path integrals and dimensional regularization. His account of renormalization theory reflects the changes in our view of quantum field theory since the advent of effective field theories.
The book's scope extends beyond quantum electrodynamics to elementary particle physics, and nuclear physics. It contains much original material, and is peppered with examples and insights drawn from the author's experience as a leader of elementary particle research. Problems are included at the end of each chapter.
This work will be an invaluable reference for all physicists and mathematicians who use quantum field theory, and it is also appropriate as a textbook for graduate students in this area
ßçûê:
Ðóáðèêà: Ôèçèêà /Êâàíòîâàÿ òåîðèÿ ïîëÿ /Ó÷åáíèêè /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1996
Êîëè÷åñòâî ñòðàíèö: 609
Äîáàâëåíà â êàòàëîã: 09.10.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Quarks 217 531
Rabi, I. I. 36 48
Racah, G. 45
Radiative corrections (see “Renormalization” “Quantum “Ultraviolet “Infrared “Self-energy “Vertex “Vacuum “Soft
Ramsauer 165
Ramsauer — Townsend effect 165
Rarita — Schwinger field 232 423
Rarita, W. 232 257
Rates, general formuia 134
Rays, defined 49—50
Rechenberg, H. 45
Reduction formula 436—8
Redundant couplings 331—2 522—3
Regge trajectories 468—9
Regge, T. 468 469 477
Relativistic wave equations 1—14
Relevant couplings 530
Renormalizability 37 499 502—3 516—25
Renormalization 34—8 506—16 “Field “Mass
Renormalization group 490 516 525
Representations of groups, defined 53
Representations of homogeneous Lorentz group 229—33
Resonances 159—65
Retherford, R. C. 47
Richardson O. 47
Riemann — Lebesgue theorem 181
Roberts, J. E. 424
Robertson, P. P. 42
Rochester, G. D. 30 45 123 767
Rohrlich, F. 257
Rose, M. E. 46 106 167 168 257 596
Rosenbluth formula 457
Rosenbluth, M. N. 457 470
Rosenfeld, L. 19 44 198 256 338
Rotation matrices 68
Rueger, S. M. 424
Rydberg unit (Ry), defined 593
S-matrix 4 33
S-matrix, C, CP and CPT 131—4
S-matrix, defined 113
S-matrix, internal symmetries 121—4
S-matrix, Lorentz invariance 116—21
S-matrix, parity 124—7
S-matrix, PT 130—1 133
S-matrix, S-Operator 114
S-matrix, time reversal 127—30
S-matrix, unitarity 113—14 147—51 “M-matrix”)
Sakata, S. 45 532
Sal peter, E. E. 560 563
Salam, A. 39 42 512 532
Sapirstein, J. R. 596
Scattering amplitude (f) 148 153—4 466—7
Scattering lengths, defined 157
Schaefer, G. W. 596
Schearer, J. F. 47
Schiff, L. I. 41 43 168 563 596
Schmidt-Kaler, F. 596
Schrader, R. 424
Schroedinger picture 109
Schroedinger, E. 3 4 6 13 27 47 109
Schroer, B. 257
Schubert, K. R. 767
Schur, I. 257
Schwarz, J. H. 375
Schweber, S. S. 39 40
Schwinger action principle 288
Schwinger terms 449
Schwinger, J. 14 33 35 36 37 38 40 43 46 47 48 111 766 232 257 259 291 375 376 424 470 489 498
Screaton, R. 477
Second class constraints (see “Constraints secondary constraints” “Constraints”)
Seiler, R. 257
Self-energy functions 439 473—80 493—6 508—9 512—15 575—9 583—4
Semi-simple Lie groups and algebras, defined 70 86
Sen, S. 106
Separable interactions 165
Serber, R. 46 48
Shelter Island Conference (1947) 34—8
Shifman, M. A. 555
Simply connected spaces, defined 84
SL(2, C) group 87 90
Slater, J, C. 42
Soft photons 534—48 553—6
Sommerfield, A. 3 5 6 11 47
Spaarnay, M. J. 338
Space inversion (see “Parity and space inversion”)
Spectral functions (see “Kaellen-Lehmann representation”)
Spherical harmonies 153 569
Spin matrices, defined 230
Spin sums 210 224 236—7 252 360—1 365 545
Spin(d) group 90
Spin-statistics connection 238
Spontaneous emission of photons 17—19 590
Stachel, J. 44 256
Standing wave states 166
Steinberger, J. 167
Sterman, G. 563
Stevenson, E. C. 30
Stoner, E. C. 42
Stora, R. 39
Strangeness and strange particles 123 (see “K mesons” “Hyperons”)
Stratonovich, R. L. 461 470
Streater, R. F. 257 258
Street, J. C. 30
String theory 1 15 244 371 525
Strong interactions 30
Structure constants, defined 54
SU(2) group 88 123 130
SU(3) symmetry 123
Subtractions in dispersion relations 460 465
Superficial divergences 500—2 510
Superrenormalizable interactions 503 507
Superselection rules 53 90—1
Supersymmetry 325 506 526
Suura, H. 498 562
Swieca, J. A. 257
Symanzik, K. 438 464 470
Symmetries 50—5 91—6 306—14 425 “Groups” “Lorentz “Parity” “Charge “Time “Internal “Isospin” “SU(3)”)
T-matrix 111 116 141—2 152 549
Takahashi, Y. 447 470
Tamm, L. 12 43 44 375
Tate, J. E. 424
Tatti, T. 48
Telegdi, V. L. 106 167
Temporal gauge 346
Thirring, W. 463 477
Thomas, L. H. 42 189
Thomson scattering 369 556
Thomson, J. J. 369
Threshold behavior 157-8
Time reversal (T) consequences for S-matrix 127—30
Time reversal (T), defined 58
Time reversal (T), non-conservation 134
Time reversal (T), transformation of and 74—6
Time reversal (T), transformation of creation operators 177
Time reversal (T), transformation of degenerate multi-plets 100—4
Time reversal (T), transformation of Dirac fields 227—8
Time reversal (T), transformation of general irreducible fields 242—3
Time reversal (T), transformation of one-particle states 77-81
Time reversal (T), transformation of scalar fields 206
Time reversal (T), transformation of vector fields 213
Time-ordered products, defined 143 280
Titchmarsh, E. C. 190
Toll, J. S. 477
Tomonga, S.-I. 36 37 38 40 46 47 48 259 376
Topology of Lorentz and rotation groups 86—90 (see also “Homotopy groups” “Simply “de
Townsend 165
Traces (see “Dirac matrices”)
Tree graphs, defined 283
Tung, W.-K. 106
Turlay, R. 106 167
Turnbull, H. W. 106
Tuve, M. A. 167
Two-cocycles, defined 82
Uehling effect 34 484 581
Uehling, E. A. 34 46 47 484 498
Uhlenbeck, G. E. 5 41
Ultraviolet divergences 31—8 476—7 482-3 485 491 494—7 500—5
Umezawa, H. 532
Unitarity gauge 346
Unitarity of S-matrix 113—16 129 147—51 155 161 521
Universal covering group 90
Vacuum energy 24 26
Vacuum polarization 32 34 473—85 581
Vacuum state 24 27 176
Vainshtein, A. I. 533
Van der Waerden, B. 1 40 43 257
Vaughn, M. J. 470
Velo, G. 257
Veltman, M. 477 498
Vertex function 446 485—8 507—8 579—80
Villars, F. 494 498
Waller, I. 31 45
Ward and Ward — Takahashi identities 445—8 476 508 511
Ward, J. C. 447 470
Watson's theorem 130
Watson, K. M. 130 166 167
Wave packets 109—10
Webb, N. 45
Weinberg, S. 40 42 47 105 167 168 190 256 257 338 375 424 470 471 532 533 563
Weinrich, M. 106 167
Weisskopf, V. F. 24 26 28 31 32 34 35 37 40 43 44 45 46 47 593 596
Weitz, M. 596
Wentzel, G. 40 42 46
Wess, J. 338 532
West, T. 375
Weyl, H. 12 43.
Wheeler, J. A. 4 33 46 47 166
Whittaker, E. 40
Wichmann, E. H. 189 256 498
Wick rotation 475—6
Wick's theorem 261
Wick, G. C. 105 291 475 486 497 498
Wightman, A. S. 105 257 258
Wigner rotation 68—73
Wigner three-j symbols 237
Wigner — Eckart theorem 153
Wigner, E. P. 19 39 42 43 44 51 62 68 91 93 100 103 104 105 106 108 153 156 162 168 236
Wilczek, F. 424
Williams, E. J. 563
Williams, R. C. 47
Williams, W. E. 47
Wilson's renormalization method 525—8
Wilson, W. 41 525 528 533
Witten, E. 40 257 375
Wu, C. S. 106 127 167
Yang, C. N. 106 127 132 167 168 178 189 228 257 375
Yang. C R. 168
Yennie, D. R. 562 596
Yukawa, H. 30 45 159 436 470
Zacharias, J. R. 48
Zakharov, V. I. 533
Zimmerman, W. 438 463 470 512 532
Zumino, B. 257
Zwanziger, D. 257
‘In’ and ‘out’ states 107—12 116
’t Hooft, G. 377 477 424 498
Ðåêëàìà