Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Nagel R. — One-parameter semigroups of positive operators | 13, 34, 100, 110, 139, 168, 185, 205, 250, 258, 338 |
Weintraub S. — Differential Forms. A complement to vector calculus | |
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè | 141 |
Ìàíçîí Á.Ì. — Maple V power edition | 214 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 123 |
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 174 |
Abramowitz M., Stegun I. (eds.) — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table | 885 |
Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 120 |
Rudin W. — Principles of Mathematical Analysis | 297 |
Apostol T.M. — Calculus (vol 2) | 292, 444 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 323.A 442.D, App. A, Table 3.II |
Abramowitz M., Stegun I. — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | 885 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 6 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 6 |
Berger M. — A Panoramic View of Riemannian Geometry | 83, 394, 401, 723 |
Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 140 |
Fishman G.S. — Monte Carlo: concepts, algorithms, and applications | 427, 432 |
Gray R.M., Davisson L.D. — Introduction to statistical signal processing | 428 |
Hedenmalm H., Korenblum B., Zhu K. — Theory of Bergman spaces | 32 Laplacian invariant |
Olver P.J. — Equivalence, Invariants and Symmetry | 172, 193 |
Finlayson B.A. — Numerical Methods for Problems With Moving Fronts | 301, 442 |
Trottenberg U., Schuller A., Oosterlee C. — Multigrid | 183, 191, 299, 334 |
Kodaira K. — Complex manifolds and deformation of complex structures | 9 |
Hille E. — Ordinary Differential Equations in the complex domain | 19 |
Meyer C.D. — Matrix analysis and applied linear algebra | 563 |
Hicks N. — Notes on differential geometry | 96, 139 |
Rudin W. — Real and Complex Analysis | 196, 223 |
Axler S., Bourdon p., Ramey W. — Harmonic function theory | 1 |
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 44 |
Abell M.L., Braselton J.P. — Mathematica by Example | 347, 349—351 |
Lee J.M. — Introduction to Smooth Manifolds | 267 |
Weinstock R. — Calculus of variations with applications to physics & engineering | 12 |
Joyce D.D. — Compact Manifolds with Special Holonomy | 3, 7, 10, 14, 61 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 283, 446 |
Maeder R.E. — Computer science with mathematica | 183 |
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 14 |
Landsman N.P. — Mathematical topics between classical and quantum mechanics | 425 |
Aris R. — Vectors, Tensors and the Basic Equations of Fluid Mechanics | 54, 169, 222 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 273 |
Voisin C. — Hodge theory and complex algebraic geometry 1 | 8, 119 |
Levine I.N. — Molecular Spectroscopy | 3 |
Davies E. — Spectral Theory and Differential Operators | 11 |
Edwards H. — Advanced Calculus: A Differential Forms Approach | 334 |
Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 42, 338 |
Efetov K. — Supersymmetry in disorder and chaos | 269, 298, 344 |
Kythe P.K., Schaferkotter M.R. — Partial Differential Equations and Mathematica | 108, 142, 231, 238, 257 |
Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation | 80, 128 |
Braselton J.P. — Maple by Example | 392, 396 |
Sepanski R.M. — Compact Lie Groups | 30 |
Carmona R. — Practical Time-Frequency Analysis | 140 |
Parshin A.N., Shafarevich I.R. — Algebraic Geometry III : Complex Algebraic Varieties. Algebraic Curves and Their Jacobians | 36 |
Godsil C., Royle G. — Algebraic Graph Theory | 279 |
Coffin D. — Calculus on the HP-48G/GX | 254—255 |
Terng Ch. — Critical Point Theory and Submanifold Geometry | 16 |
Joyce D.D. — Riemannian holonomy groups and calibrated Geometry | 3, 7, 9, 13, 58 |
Strauss W.A. — Partial Differential Equations: An Introduction | 14 |
Hansen G.A., Zardecki A., Douglass R.A. — Mesh Enhancement: Selected Elliptic Methods, Foundations and Applications | 121, 252, 280, 285 |
Falconer K.J. — Techniques in Fractal Geometry | 230, 241, 243 |
Tarkhanov N.N. — Cauchy Problem for Solutions of Elliptic Equations | 178 |
Krantz S.G. — Function Theory of Several Complex Variables | 35 |
Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 56 |
Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry | 330 |
Krantz S.K. — Partial Differential Equations and Complex Analysis | 1, 2 |
Montiel S., Ros A. — Curves and Surfaces | 351 |
Eringen A.C. — Mechanics of continua | 523, 553 |
Shankar R. — Basic Training In Mathematics | 192 |
McMano D., Topa D.M. — A Beginner's Guide to Mathematica | 621 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 785—786, 900—902, 1129—1130 |
Zoladek H. — Monodromy Group | 196,199 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 229, 263, 265, 270, 470, 528 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 229,263,265,270 |
Shiryaev A., Peskir G. — Optimal Stopping and Free-Boundary Problems | 86 |
Finch S.R. — Mathematical constants | 221, 226 |
Gudder S.P. — Stochastic methods in quantum mechanics | 5 |
Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 472, 646 |
Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed) — Partial Differential Equations I: Foundations of the Classical Theory | 10 |
Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 4 |
Besse A.L. — Einstein Manifolds | 34 |
Schey H.M. — DIV, Grad, Curl, and All That: An Informal Text on Vector Calculus | 122 |
Rudin W. — Functional analysis | 189 |
Ziman J.M. — Elements of Advanced Quantum Theory | 181 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | 338 |
Planck M. — Introduction to Theoretical Physics | 56 |
Griffits D.J. — Introduction to quantum mechanics | 122 |
Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 332 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 785—786, 900—902, 1129—1130 |
Ito K. — Encyclopedic Dictionary of Mathematics | 323.A, 442.D, App. A, Table 3.II |
Menzel D.H. — Mathematical Physics | 75, 121, 179 |
Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 2) | 293 |
Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 34 |
Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 239 |
Morita S. — Geometry of differential forms | 155 |
Vapnik V.N. — The nature of statistical learning theory | 277 |
Guimaraes A.P. — Magnetism and Magnetic Resonance in Solids | 80, 164 |
Rudin W. — Real and complex analysis | 195 |
Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 54, 55 |
Morita Sh. — Geometry of Differential Forms | 155 |
Greenberg M.D. — Advanced engineering mathematics | 779 |
Kythe P.K. — Fundamental Solutions for Differential Operators and Applications | 12, 24, 323 |
Stakgold I. — Green's Functions and Boundary Value Problems | 44, 169 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 785—786, 900—902, 1129—1130 |
Berard P.H. — Spectral Geometry | see Laplace |
Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 27, 106 |
Hilborn R.C. — Chaos and nonlinear dynamics | 452—455 |
Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applications | 297 |
Klerk de E. — Aspects of Semidefinite Programming | 6, 93 |
Grosswald E. — Bessel Polynomials | see “Operators, Laplacian” |
Soule C. — Lectures on Arakelov Geometry | 40 |
Yano K. — Differential geometry on complex and almost complex spaces | 8, 23 |
do Carmo M.P. — Riemannian geometry | 83 (Ex.), 143 (Ex.) |
Morgan F. — Riemannian geometry, a beginners guide | 103 |
Schechter M. — Spectra of partial differential operators | 198 |
Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach | 414 |
Bamberg P.G., Sternberg Sh. — A Course in Mathematics for Students of Physics: Volume 1 | 227 |
Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | II-2-10 |
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 86, 213 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 258 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 58 |
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 21 |
Chung F.R.K. — Spectral Graph Theory | 2 |
Lang S. — SL2: With 33 Figures | 270 |
Al-Khalili J.S., Roeckl E. — The Euroschool Lectures on Physics with Exotic Beams, Vol. 2 | 270 |
Char B.W. — First Leaves: A Tutorial Introduction to Maple V | 99 |
Saad Y. — Iterative methods for sparse linear systems | see “Laplacian operator” |
Demidov A.S. — Generalized Functions in Mathematical Physics: Main Ideas and Concepts | 11 |
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 71 |
Allaire G. — Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation | 3 |
Port S.C., Stone C.J. — Brownian motion and classical potential theory | 86 |
Griffits D. — Introduction to elementary particles | 146 |
Pope S.B. — Turbulent Flows | 652 |
Desloge E.A. — Classical Mechanics. Volume 1 | 425 |
Driscoll T.A., Trefethen L.N. — Schwarz-Christoffel Mapping | 107 |
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 104 |
Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 330 |
Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 120 |
Bóna M. — A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory | 224 |
Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 303, 374 |
Gray C.G., Gubbins K.E. — Theory of molecular fluids | 448 |
Egorov Y.V., Shubin M.A. — Partial Differential Equations I (Foundations of the Classical) | 10 |
Schulman L.S. — Techniques and applications of path integration | 205, 215 |
Olver P.J., Shakiban C. — Applied linear. algebra | 338, 343, 368, 380 |
Bamberg P.G., Sternberg S. — A Course in Mathematics for Students of Physics, Vol. 1 | 227 |
Kreyszig E. — Advanced engineering mathematics | 443, A73 |
Slater J.C. — Quantum Theory of Atomic Structure vol1 | 46 |
Seul M., O'Gorman L., Sammon M.J. — Practical algorithms for image analysis. Description, examples, and code | 81, 84 |
D'Inverno R. — Introducing Einstein's Relatvity | 44 |
Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua | 248, 249 |
Libermann P., Marle Ch.M. — Symplectic Geometry and Analytical Mechanics | 51 |
Volovik G. — Artificial black holes | 203 |
Bertlmann R.A. — Anomalies in Quantum Field Theory | 53—54, 419, 421, 422 |
Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 113 |
Neubrander F. (Ed), Ferreyra G.S. (Ed) — Evolution Equations, Vol. 168 | 144 |
Bóna M. — Introduction to Enumerative Combinatorics | 312 |
Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (1)573, 596, 604, 606 |
Basdevant J.-L., Dalibard J. — Quantum Mechanics | 197, 421, 498 |
Grosche C., Steiner F. — Handbook of Feynman path integrals | 30, 425 |
Mihalas D., Mihalas B.W. — Foundations of Radiation Hydrodynamics | 659—661, 679—681 |
Kigami J. — Analysis on Fractals | 65, 66, 92, 107, 108, 186 |
McQuistan R.B. — Scalar and Vector Fields: a Physical Interpretation | 192, 195, 235 |
Slater J.C., Frank N.H. — Mechanics | 195, 266—267 |
Kitahara M. — Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates | 12, 207 |
Weinberg S. — Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity | 109 |
Nash C. — Differential Topology and Quantum Field Theory | 27—28, 39—41, 46, 92—93, 127—128, 148, 163—164, 209, 236, 260, 282, 332, 349-350 |
Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 153 |
Morrow J., Kodaira K. — Complex Manifolds | 97 |
Eringen A.C., Suhubi E.S. — Elastodynamics (vol.1) Finite motions | 308 |
Àìåíçàäå Þ.À. — Òåîðèÿ óïðóãîñòè | 121 |
Friedlander F.G. — The Wave Equation on a Curved Space-Time | 12 |
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 563 |
Fordy A.P., Wood J.C. (eds.) — Harmonic maps and integrable systems | 30, 130 |
Astfalk G. — Applications on Advanced Architecture Computers | 28, 32 |
Balakrishnan N., Rao C.R. — Handbook of Statistics (Vol. 17): Order Statistics: Applications | 563 |
Akhmediev N., Ankiewicz A. — Dissipative Solitons | 82, 270 |
Ohanian H.C. — Classical Electrodynamics | 16, 20, 22 |
Sutton O.G. — Mathematics in action | 66, 117, 201 |
Morita S. — Geometry of Differential Forms | 155 |
Goffman C. — Calculus of several variables | 168 |
Goertzel G. — Some Mathematical Methods of Physics | 111, 129, 132, 147 |
Messiah A. — Quantum mechanics. Volume 1 | 63 |
Marks R.J.II. — The Joy of Fourier | 680 |
Schwartz M. — Principles of electrodynamics | 42 |
Klauder J.R., Sudarshan E.C.G. — Fundamentals of Quantum Optics | 11 |
Kreyszig E. — Introductory functional analysis with applications | 584 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 621 |
Riley, Hobson — Mathematical Methods for Physics and Engineering | see "del squared $\nabla^{2}$ (Laplacian)" |
Neuberger J.W. — Sobolev gradients and differential equations | 33, 37 |
Petrou M., Bosdogianni P. — Image processing: the fundamentals | 243 |
Yoo T.S. (ed.) — Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis | 31, 33, 112 |
Kythe P.K., Puri P. — Partial differential equations and Mathematica | 108, 142, 231, 238, 257 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 318, 398, 421, 440, 527 |
Eringen A.C., Suhubi E.S. — Elastodynamics (vol. 2) Linear theory | 348 |
Gallavotti G. — Foundations of fluid mechanics | 156 |
Atkins P. — Molecular Quantum Mechanics | 13 |
Davis H. F., Snider A. D. — Introduction to Vector Analysis | 103—105 |
Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 115 |
Morse P.M. — Methods of theoretical physics | 6 |
Adams D.R., Hedberg L.I. — Function spaces and potential theory | see "Laplace operator" |
Kentaro Yano — Integral Formulas in Riemannian Geometry | 11 |
Krantz S.G. — Function theory of several complex variables | 35 |
Stakgold I. — Green's functions and boundary value problems | 44, 169 |
Weinreich G. — Geometrical vectors | 98—99, 101, 105, 109 |
Rosser G. — Interpretation of classical electromagnetism | 46, 58, 146, 150, 386, 387, 389 |
Joyce D.D. — Compact manifolds with special holonomy | 3, 7, 10, 14, 61 |
Rudzikas Z. — Theoretical Atomic Spectroscopy | 220 |
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 13 |
Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 56 |
Grosswald E. — Bessel Polynomials | see "Operators, Laplacian" |
Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 41, 71 |
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 91 |
Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 95 |
Naber G.L. — Topology, Geometry and Gauge Fields | 416, 423 |
Griffits D.J. — Introductions to electrodynamics | 23 |
Ðàäèîðåëåéíàÿ ñòàíöèÿ òèïà Ð-414. Òåõíè÷åñêîå îïèñàíèå. Êíèãà âòîðàÿ | 97 |
Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 45 |
Amit Y. — 2D object detection and recognition | 100 |
Schutz B.F. — A first course in general relativity | 137 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 139, 338 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 125, 277, 285 |
Kuo H.-H. — Gaussian Measures in Banach Spaces | 168 |
Vafa C., Zaslow E. — Mirror symmetry | 22, 605 |
Greene R.E., Wu H. — Function Theory on Manifolds Which Possess a Pole | 1, 7 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 292, 444 |
Collatz L. — Functional analysis and numerical mathematics | 123, 136 |
Lemm J.M., Meurant G. — Computer Solution of Large Linear Systems | 43, 56, 58, 562, 613 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 411 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 334 |
Peszat S., Zabczyk J. — Stochastic partial differential equations with Levy noise: An evolution equation approach | 302, see "Laplace operator" |
Von Grudzinski O. — Quasihomogeneous distributions | 327 |
Prikarpatsky A.K., Taneri U., Bogolubov N.N. — Quantum field theory with application to quantum nonlinear optics | 7 |
Farina J.E.G. — Quantum theory of scattering processes | 5, 10, 29, 46 |
Lienhardt J.H. IV, Lienhardt J.H. V — A heat transfer textbook | 56, 235 |
Fung Y. — A First Course in Continuum Mechanics: for Physical and Biological Engineers and Scientists | 61 |
Slater J., Frank N. — Introduction to Theoretical Physics | 56 |
Yano K. — Integral Formulas in Riemannian Geometry | 11 |
Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 173 |
Greiner W., Maruhn J. — Nuclear models | 152 |
Flanders H. — Differential Forms with Applications to the Physical Sciences | 38 ff, 44, 82 |
Joyce D. — Riemannian Holonomy Groups and Calibrated Geometry (Oxford Graduate Texts in Mathematics) | 3, 7, 9, 13, 58 |
Abramowitz M., Stegun I.A. (eds.) — Handbook of mathematical functions (without numerical tables) | 885 |
Zorich V.A., Cooke R. — Mathematical analysis II | 264, 265, 273, 493 |
Cheney W. — Analysis for Applied Mathematics | 198, 275, 297 |
Zorich V. — Mathematical Analysis | 264, 265, 273, 493 |
Synge J. L. — Tensor Calculus | 58 |
Grosse H., Martin A. — Particle Physics and the Schroedinger Equation | 12, 14, 20, 31, 32, 34, 36, 56—58, 60, 63, 68, 74, 79, 81, 87, 89, 92, 93, 123 |
Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 275, 282 |
Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (1)573, 596, 604, 606 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 318, 398, 421, 449, 495, 527 |
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 51 |
Griffiths P., Harris J. — Principles of algebraic geometry | 82 |
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè | 141 |
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè - Maple, Matlab, LaTex | 141 |
Elschner J. — Singular Ordinary Differential Operators and Pseudodifferential Equations | 92 |
Kline M. — Mathematical thought from ancient to modern times | 785, 786, 900—902, 1129, 1130 |
Lang S. — SL2 (R) (Graduate Texts in Mathematics) | 270 |
Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 155 |
Brandt S., Dahmen H.D. — Quantum mechanics on the personal computer | 98 |