Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kogut J.B., Stephanov M.A. — The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments | |
Íåìíþãèí Ì.À., Ñòåñèê Î.Ë. — Ñîâðåìåííûé ôîðòðàí. Ñàìîó÷èòåëü | 207 |
Ãàììà Ý., Õåëì Ð., Äæîíñîí Ð. — Ïðèåìû îáúåêòíî-îðèåíòèðîâàííîãî ïðîåêòèðîâàíèÿ. Ïàòòåðíû ïðîåêòèðîâàíèÿ | 227 |
Âåâåðêà Ï., Òåéëîð Ì. — ICQ 2000 äëÿ "÷àéíèêîâ" | 104 |
Ïîíîìàðåíêî Ñ.È. — Adobe Illustrator CS. Íàèáîëåå ïîëíîå ðóêîâîäñòâî | ñì. «Ìàêðîêîìàíäà» |
Ñàõëèí Ä. — Adobe Acrobat 6 | 62 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 419 |
Khosrowpour M. — Encyclopedia Of Information Science And Technology | 572, 2881 |
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation | see “Dynamical path length” |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 431.A |
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 81, 884 |
Chopra V., Eaves J., Jones R. — Beginning JavaServer Pages | See also Specific action |
Walrath K., Campione M., Huml A. — JFC Swing Tutorial, The: A Guide to Constructing GUIs | 2nd 3rd 4th 5th |
Hamilton W.R. — The collected mathematical papers. Volume 1: geometrical optics | See also V |
Hamilton W.R. — The collected mathematical papers. Volume 2: dynamics | 25, 107, 214. See also Characteristic function |
Baker A. — Algebra and Number Theory | 30 |
Cox D., Katz S. — Mirror symmetry and algebraic geometry | 412, 416 |
McGregor J.D., Sykes D.A. — A Practical Guide to Testing Object-Oriented Software | |
Majid S. — Foundations of Quantum Group Theory | 2, 16—22, 216, 494 |
Hinch E.J. — Perturbation Methods | 129 |
Winograd T. — Understanding computers and cognition | 71—72 |
Weinstock R. — Calculus of variations with applications to physics & engineering | 85—88, 268—269 |
Deitel H.M. — Visual C# How to Program | 2nd 3rd |
Holzner S. — Spring Into PHP 5 | 2nd |
Bragg R. — Windows Server 2003 Security: A Technical Reference | |
Goldstein H., Poole C., Safko J. — Classical mechanics | 356 |
Maier R. — Knowledge Management Systems: Information and Communication Technologies for Knowledge Management | 254, 256 |
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 38, 513 |
Rotman J.J. — An Introduction to the Theory of Groups | 55 |
Liddle A., Lyth D.H. — Cosmological Inflation and Large-Scale Structure | 164 |
Wilensky R. — Planning and Understanding | 21, 137—138 |
Swart B., Cashman M., Gustavson P. — C++ Builder Developer's Guide | |
Deitel H.M. — C++ How to Program | 2nd 3rd 4th 5th 6th 7th |
Lippman S.B., Lajoie J., Moo B.E. — C++ Primer | |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 367 |
Maugin G.A. — Material inhomogeneities in elasticity | 3 |
Straubing H. — Finite automata, format logic, and circuit complexity | 61 |
Ryder L.H. — Quantum Field Theory | 160 |
Lawvere F.W., Rosebrugh R. — Sets for Mathematics | 76, 171ff |
Grillet P.A. — Abstract Algebra | See also group action |
Sepanski R.M. — Compact Lie Groups | 9 |
Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra | 59, 101, 111 |
Godsil C., Royle G. — Algebraic Graph Theory | 19 |
Eisenbud D. — Computations in Algebraic Geometry with Macaulay 2 | 289, 293 |
Strauss W.A. — Partial Differential Equations: An Introduction | 375 |
Sketches — A supplement for Category theory for computing science | 45 |
Ericson T. — Codes on Euclidean Spheres | 205 |
Bridges Th.J., Furter J.E. — Singularity Theory and Equivariant Symplectic Maps | 11. |
Gershenfeld N. — The Nature of Mathematical Modelling-Neil Gershenfeld | 38 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 279 |
Blyth T.S., Robertson E.F. — Basic Linear Algebra | 70 |
Thaller B. — Visual quantum mechanics | 51 |
Aitchison I.J.R., Hey A.J.G. — Gauge theories in particle physics. Volume 1: from relativistic quantum mechanics to QED | 120 |
Shankar R. — Basic Training In Mathematics | 309 |
James G., Liebeck M.W. — Representations and Characters of Groups | 337 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 238,366 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 238, 366 |
Gudder S.P. — Stochastic methods in quantum mechanics | 169 |
Hein J.L. — Discrete Mathematics | 554 |
Heusler M., Goddard P. — Black Hole Uniqueness Theorems | see Lagrangian |
Mensky M.B. — Continuous quantum measurements and path integrals | 37 |
Thouless D.J. — Topological quantum numbers in nonrelativistic physics | 16.17, 32 |
Rowe N.C. — Artifical intelligence through Prolog | see Operator |
Zagoskin A.M. — Quantum theory of many-body systems | 13 ff. |
Eschrig H. — The Fundamentals of Density Functional Theory | 164, 167, 168 |
Pokorski S. — Gauge field theories | 12 |
White D.J. — Markov Decision Processes | 34, 117 |
Kadanoff L.P. — Statistical physics | 6, 24, 47, 262 |
Rammer J. — Quantum transport theory | 7 |
Lang S. — Undergraduate Algebra | 73 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 465, 554 |
Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 99, 105 |
Gitman D.M., Tyutin I.V. — Quantization of Fields with Constraints | 5, 171 |
McDuff D., Salamon D. — Introduction to Symplectic Topology | 12, 16—17, 280 |
Ito K. — Encyclopedic Dictionary of Mathematics | 431.A |
Galindo A., Pascual P. — Quantum Mechanics Two | I 123 |
Meester R., Roy R. — Continuum percolation | 23, 24 |
Polkinghorne J.C. — The quantum world | 42f, 92 |
Dirac P.A.M. — The Principles of Quantum Mechanics | 128 |
Du D. (ed.), Pardalos P. (ed.) — Handbook of combinatorial optimization: supplement volume A | 417, 594 |
Cohen A.M., Cuypers H., Sterk H. — Some tapas of computer algebra | 100, 185 |
Elizalde E., Odintsov A.D., Romeo A. — Zeta Regularization Techiques with Applications | 10 |
Lanzcos C. — The Variational Principles of Mechanics | 5 |
Konopinski E.J. — Electromagnetic fields and relativistic particles | see Variation principle |
Frampton P. — Dual Resonance Models and Superstrings | 219, 221, 401 |
Lawvere F.W., Schanuel S.H. — Conceptual Mathematics: A First Introduction to Categories | 218f, 303 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 12 |
Bleecker D. — Gauge Theory and Variational Principles | 55 |
Borel A. — Linear algebraic groups | AG.2.4 |
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 100, 329 |
Simon B. — Representations of Finite and Compact Groups | 3 |
Hilborn R.C. — Chaos and nonlinear dynamics | 280—285, 491, 505—506 |
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 87 |
Eddington A.S. — Space Time and Gravitation | 147 |
Alagić S., Arbib M.A. — The Design of Well-Structured and Correct Programs | 5 |
Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1) | see also “Lagrangian”, “Hamiltonian” |
Libai A., Simmonds J.G. — The Nonlinear Theory of Elastic Shells | 40 |
Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity | see “Newtonian mechanics” |
Dekker H. — Classical and quantum mechanics of the damped harmonic oscillator | 91—93, principal function |
Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 144, 146, 147, 150, 162, 165, 204, 234 |
Atkinson D., Johnson P.W. — Exercises in Quantum Field Theory: A Self-Contained Book of Questions and Answers | 24 |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 1, 68, 116—120, 126 |
Adair R.K. — The Great Design: Particles, Fields, and Creation | 29n, 164 |
Sagan B.E. — The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions | 7 |
Êàñèõèí Â.Â. — Êàê ñòàòü ñîçäàòåëåì êîìïüþòåðíûõ èãð. Êðàòêîå ðóêîâîäñòâî | 35 |
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 318 |
Allen H.S. — Electrons and Waves | 43, 45, 299 |
Held A. (ed.) — General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2 | see “Lagrangian”, “Hamiltonian” |
Hein J.L. — Discrete Structures, Logic, and Computability | 548 |
Mercier A. — Analytical and canonical formalism in physics | 9, 11, 12, 62, 55, 59, 60, 69, 94 |
Dirac P.A.M. — The Principles of Quantum Mechanics, Vol. 27 | 128 |
Galindo A., Pascual P. — Quantum Mechanics One | 123 |
Logan J.D. — Invariant Variational Principles | 11 |
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 69, 72 |
Hans-Jürgen Stöckmann — Quantum Chaos: An Introduction | 248, 264, 272—275, 282, 292, 297—301, 304 |
Planck M. — Theory of heat: Being volume V of "Introduction to theoretical physics" | 262 |
Berger M., Cole M. (translator) — Geometry I (Universitext) | see “Group action” |
Taubner D. — Finite êepresentations of CCS and TCSP çrograms by ôutomata and Petri Nets | 13 |
Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics | 171—172 |
Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 81—82, 339 |
Tarantola A. — Inverse problem theory and methods for model parameter estimation | 189 |
Trappl R., Petta P. — Creating Personalities for Synthetic Actors | see also “Human activity” |
Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations | 299, 307 |
Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1) | 7, 143, 729, 817, see also “Lagrangian” |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 275 |
Junker G. — Supersymmetric Methods in Quantum and Statistical Physics | 68, 70 |
Ardema M.D. — Analytical Dynamics: Theory and Applications | 95 |
Schulman L.S. — Techniques and applications of path integration | 7 |
Kompaneyets A.S., Yankovsky G. — Theoretical Physics | 82 |
Kolb E.W., Turner M.S. — The Early Universe | 38—39, 47—48, 217—218, 277, 459, 479 |
Exner P. — Open quantum systems and Feynman integrals | 214, 279, 311 |
Shore S.N. — The Tapestry of Modern Astrophysics | 76 |
Greiner W. — Quantum mechanics: special chapters | 362 |
Hoffman B. — Strange Story of the Quantum | 79, 141 |
Phillips N.Ch. — Equivariant K-Theory and Freeness of Group Actions on C*-Algebras | 13, 15 |
D'Inverno R. — Introducing Einstein's Relatvity | 42, 96, 99, 115-17, 153 |
Mazo R.M. — Brownian Motion: Flucuations, Dynamics, and Applications | 79 |
Binmore K. — Fun and Games: A Text on Game Theory | 26, 349 |
Libermann P., Marle Ch.M. — Symplectic Geometry and Analytical Mechanics | 86 |
Eddington A.S. — Nature of the Physical World | 180, 241 |
Greiner W., Mueller B. — Quantum mechanics: symmetries | 9 |
Hume-Rothery W. — Atomic Theory for Students of Metallurgy | 19, 27 |
Milner R. — Communicating and mobile systems: the symbol for pi-calculus | 16, 29 |
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators | 12 |
Siegel W. — Fields | III-IV |
Basdevant J.-L., Dalibard J. — Quantum Mechanics | 294, 308 |
Íàçàðîâ Ñ.Â., Ìåëüíèêîâ Ï.Ï., Ñìîëüíèêîâ Ë.Ï. — Ïðîãðàììèðîâàíèå â ïàêåòàõ MS Office | 302 |
Grosche C., Steiner F. — Handbook of Feynman path integrals | 4-5, 7-8, 10-11, 16, 30, 41, 66, 84, 97, 133 |
Auletta G. — Foundations and Interpretation of Quantum Mechanics | 10, 20 |
Sternberg S. — Group Theory and Physics | 12 |
Amit D.J. — Field theory, the renormalization group, and critical phenomena | 106, 142, 145, 366, 368, 379 |
Walley P. — Statistical reasoning with imprecise probabilities | 24, 160—61, 235—41 |
Ullman J.D., Widom J. — A first course in database systems | 352 |
Richter K. — Semiclassical theory of mesoscopic quantum systems | 20, 23, 65 |
Perrin D., Pin J.-E. — Infinite Words: Automata, Semigroups, Logic abd Games | 448 |
Cheng T.-P., Li L.-F. — Gauge Theory of Elementary Particle Physics | 3 |
Rice J. — Introduction to statistical mechanics for students of physics and physical chemistry | 79 |
Simmons G.F. — Differential Equations with Applications and Historical Notes | 378 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 136, 166, 267, 269, 398 |
Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 257 |
Zakrzewski W.J. — Low Dimensional Sigma Models | 39, 150—152, 163, 178, 182, 184, 185, 191, 192, 266 |
Sutton O.G. — Mathematics in action | 26, 111 |
Ehlers J. (ed.) — Relativity theory and astrophysics. 1. Relativity and cosmology | 43 |
Messiah A. — Quantum mechanics. Volume 1 | 10 |
Lanczos C. — Variational principles of mechanics | 5 |
Ehlers J. (ed.) — Relativity theory and astrophysics. Relativity and cosmology | 43 |
Hermann R. — Differential geometry and the calculus of variations | 135, 136 |
Milner R. — Communicating and Mobile Systems: the Pi-Calculus | 16, 29 |
Schremmer A. — Reasonable basic algebra | 46 |
Bjorner D. — Software Engineering 3 | 13, 144 |
Atkins P. — Molecular Quantum Mechanics | 37, 484 |
Poznyak A.S., Najim K., Gomez-Ramirez E. — Self-learning control of finite Markov chains | 18, 47, 55, 74, 126, 172 |
Audin M. — Geometry | 145, 190 |
Papadopoulos G.J. (ed.), Devreese J.T. (ed.) — Path integrals and their applications in quantum, statistical, and solid state physics | 123 |
Maxwell J.C., Larmor J. — Matter and Motion | 145 |
Audin M. — Geometry | 145, 190 |
Akhiezer A.I., Berestetskii V.B. — Quantum electrodynamics | 156, 223 |
Baeten J.C.M., Middelburg Ñ.A. — Process Algebra with timing | 2, 10 |
Ross G. — Grand Unified Theories | 30 |
Carmichael R.D. — The theory of relativity | 26, 59, 110 |
Dirac P.A.M. — The Principles of Quantum Mechanics | 128 |
Siegel W. — Fields | III-IV |
Avramidi I.G. — Heat Kernel and Quantum Gravity | 9, 78 |
Feher L. (ed.), Stipsicz A. (ed.), Szenthe J. (ed.) — Topological quantum field theories and geometry of loop spaces | 36, 46, 97 |
Greiner W., Reinhardt J. — Field quantization | 4, 32, 344 |
Conen W., Neumann G. — Coordination Technology for Collaborative Applications: Organizations, Processes, and Agents | 4, 21, 28, 34, 44, 53, 59, 80, 81, 85, 88, 91—93, 99, 102, 106, 108—112, 115, 116, 133—138, 142, 147, 148, 189, 213 |
Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods | see "Principle of least action" |
Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 166, 173, 216, 241, 274, 278, 305—306, 311 |
Wiedemann H. — Particle accelerator physics II | 1 |
Lemons D.S. — Perfect form: Variational principles, methods, and applications in elementary physics | 70 |
Giarratano J.C., Riley G.D. — Expert Systems: Principles and Programming | 334 |
Pommaret J.F. — Systems of partial differential equations and Lie pseudogroups | 6.1.9 |
Chandler B., Magnus W. — The history of combinatorial group theory: a case study in the history of ideas | 165, 169 |
Wooldridge M. (ed.), Muller J. (ed.), Tambe M. (ed.) — Intelligent Agents II | 26, 65, 72 |
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 37, 484 |
Leader E., Predazzi E. — An introduction to gauge theories and modern particle physics | 1.29 |
Ìàðêîâ Å., Íèêèôîðîâ Â. — Delphi 2005 äëÿ .NET | 368 |
Frankel T. — The geometry of physics: an introduction | 152, 274, 524 |
Milonni P.W. — The quantum vacuum: introduction to quantum electrodynamics | 334 |
Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 489, 500 |
Ôëýíàãàí Ä. — Java â ïðèìåðàõ. Ñïðàâî÷íèê | 10—16, 10—21, 10—25 |
Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501) | 7, 143, 729, 817, see also "Lagrangian" |
Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians | 7, 143, 729, 817, see also "Lagrangian" |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 393 |
Koonin S.E., Meredith D.C. — Computational Physics-Fortran Version | 16 |
Vafa C., Zaslow E. — Mirror symmetry | 146 |
Planck M. — The universe in the light of modern physics | 20, 30, 41, 93, 104 |
Zeidler E. — Oxford User's Guide to Mathematics | 920 |
Chandler D. — Introduction to modern statistical mechanics | 176 |
Schwinger J. — Particles, Sources, And Fields. Volume 3 | see also "Action principle" |
Langhaar H.R. — Energy Methods in Applied Mechanics | 239 |
Argyris J., Faust G., Haase M. — An Exploration of Chaos | 76 |
Hume-Rothery W. — Electrons, Atoms, Metals and Alloys | 51 |
Attwood S.S. — Electric and Magnetic Fields | 13, 256, 461 |
Rice J.A. — Mathematical statistics and data analysis | 571 |
Magurn B.A. — An algebraic introduction to k-theory | 135 |
Abhyankar S.S. — Lectures on Algebra Volume 1 | 651—656 |
Kushkuley A., Balanov Z. — Geometric Methods in Degree Theory for Equivariant Maps | 13 |
Silva V.D. — Mechanics and Strength of Materials | 3 |
Owen D. — A First Course in the Mathematical Foundations of Thermodynamics (Undergraduate Texts in Mathematics) | 33, 35, 68, 69, 73, 75, 77, 79, 80, 82, 84, 86, 87, 89, 93, 94, 98, 104, 109, 111, 127—129 |
McGettrick A.D. — The Definition of Programming Languages | 22, 146, 152, 204 |
Deitel H., Deitel P.J. — C. How to Program | 25, 26, 37, 56, 66 |
Bell E.T. — Mathematics: Queen and Servant of Science | 347, 350 |
Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | see "Least action" |
Frankel T. — The geometry of physics: An introduction | 152, 274, 524 |
Sturrock P. — Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas | 36 |
Landau L.D., Lifshitz E.M. — Course of Theoretical Physics (vol.3). Quantum Mechanics. Non-relativistic Theory | 20, 165n. |
Davies P. — The New Physics | 394 |
Joyner D. — Adventures in group theory: Rubik's cube, Merlin's machine, and other mathematical toys | 110 |
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 100, 329 |
Exner P. — Open quantum systems and Feynman integrals | 214, 279, 311 |
Jost J. — Bosonic Strings: A mathematical treatment | 1, 3, 6, 7, 12, 19, 85, 87 |