Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: action



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Kogut J.B., Stephanov M.A. — The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments
Íåìíþãèí Ì.À., Ñòåñèê Î.Ë. — Ñîâðåìåííûé ôîðòðàí. Ñàìîó÷èòåëü207
Ãàììà Ý., Õåëì Ð., Äæîíñîí Ð. — Ïðèåìû îáúåêòíî-îðèåíòèðîâàííîãî ïðîåêòèðîâàíèÿ. Ïàòòåðíû ïðîåêòèðîâàíèÿ227
Âåâåðêà Ï., Òåéëîð Ì. — ICQ 2000 äëÿ "÷àéíèêîâ"104
Ïîíîìàðåíêî Ñ.È. — Adobe Illustrator CS. Íàèáîëåå ïîëíîå ðóêîâîäñòâîñì. «Ìàêðîêîìàíäà»
Ñàõëèí Ä. — Adobe Acrobat 662
Hunter J.K., Nachtergaele B. — Applied Analysis419
Khosrowpour M. — Encyclopedia Of Information Science And Technology572, 2881
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitationsee “Dynamical path length”
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2431.A
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic81, 884
Chopra V., Eaves J., Jones R. — Beginning JavaServer PagesSee also Specific action
Walrath K., Campione M., Huml A. — JFC Swing Tutorial, The: A Guide to Constructing GUIs2nd 3rd 4th 5th
Hamilton W.R. — The collected mathematical papers. Volume 1: geometrical opticsSee also V
Hamilton W.R. — The collected mathematical papers. Volume 2: dynamics25, 107, 214. See also Characteristic function
Baker A. — Algebra and Number Theory30
Cox D., Katz S. — Mirror symmetry and algebraic geometry412, 416
McGregor J.D., Sykes D.A. — A Practical Guide to Testing Object-Oriented Software
Majid S. — Foundations of Quantum Group Theory2, 16—22, 216, 494
Hinch E.J. — Perturbation Methods129
Winograd T. — Understanding computers and cognition71—72
Weinstock R. — Calculus of variations with applications to physics & engineering85—88, 268—269
Deitel H.M. — Visual C# How to Program2nd 3rd
Holzner S. — Spring Into PHP 52nd
Bragg R. — Windows Server 2003 Security: A Technical Reference
Goldstein H., Poole C., Safko J. — Classical mechanics356
Maier R. — Knowledge Management Systems: Information and Communication Technologies for Knowledge Management254, 256
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics38, 513
Rotman J.J. — An Introduction to the Theory of Groups55
Liddle A., Lyth D.H. — Cosmological Inflation and Large-Scale Structure164
Wilensky R. — Planning and Understanding21, 137—138
Swart B., Cashman M., Gustavson P. — C++ Builder Developer's Guide
Deitel H.M. — C++ How to Program2nd 3rd 4th 5th 6th 7th
Lippman S.B., Lajoie J., Moo B.E. — C++ Primer
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications367
Maugin G.A. — Material inhomogeneities in elasticity3
Straubing H. — Finite automata, format logic, and circuit complexity61
Ryder L.H. — Quantum Field Theory160
Lawvere F.W., Rosebrugh R. — Sets for Mathematics76, 171ff
Grillet P.A. — Abstract AlgebraSee also group action
Sepanski R.M. — Compact Lie Groups9
Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra59, 101, 111
Godsil C., Royle G. — Algebraic Graph Theory19
Eisenbud D. — Computations in Algebraic Geometry with Macaulay 2289, 293
Strauss W.A. — Partial Differential Equations: An Introduction375
Sketches — A supplement for Category theory for computing science45
Ericson T. — Codes on Euclidean Spheres205
Bridges Th.J., Furter J.E. — Singularity Theory and Equivariant Symplectic Maps11.
Gershenfeld N. — The Nature of Mathematical Modelling-Neil Gershenfeld38
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory279
Blyth T.S., Robertson E.F. — Basic Linear Algebra70
Thaller B. — Visual quantum mechanics51
Aitchison I.J.R., Hey A.J.G. — Gauge theories in particle physics. Volume 1: from relativistic quantum mechanics to QED120
Shankar R. — Basic Training In Mathematics309
James G., Liebeck M.W. — Representations and Characters of Groups337
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration238,366
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1238, 366
Gudder S.P. — Stochastic methods in quantum mechanics169
Hein J.L. — Discrete Mathematics554
Heusler M., Goddard P. — Black Hole Uniqueness Theoremssee Lagrangian
Mensky M.B. — Continuous quantum measurements and path integrals37
Thouless D.J. — Topological quantum numbers in nonrelativistic physics16.17, 32
Rowe N.C. — Artifical intelligence through Prologsee Operator
Zagoskin A.M. — Quantum theory of many-body systems13 ff.
Eschrig H. — The Fundamentals of Density Functional Theory164, 167, 168
Pokorski S. — Gauge field theories12
White D.J. — Markov Decision Processes34, 117
Kadanoff L.P. — Statistical physics6, 24, 47, 262
Rammer J. — Quantum transport theory7
Lang S. — Undergraduate Algebra73
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry465, 554
Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis99, 105
Gitman D.M., Tyutin I.V. — Quantization of Fields with Constraints5, 171
McDuff D., Salamon D. — Introduction to Symplectic Topology12, 16—17, 280
Ito K. — Encyclopedic Dictionary of Mathematics431.A
Galindo A., Pascual P. — Quantum Mechanics TwoI 123
Meester R., Roy R. — Continuum percolation23, 24
Polkinghorne J.C. — The quantum world42f, 92
Dirac P.A.M. — The Principles of Quantum Mechanics128
Du D. (ed.), Pardalos P. (ed.) — Handbook of combinatorial optimization: supplement volume A417, 594
Cohen A.M., Cuypers H., Sterk H. — Some tapas of computer algebra100, 185
Elizalde E., Odintsov A.D., Romeo A. — Zeta Regularization Techiques with Applications10
Lanzcos C. — The Variational Principles of Mechanics5
Konopinski E.J. — Electromagnetic fields and relativistic particlessee Variation principle
Frampton P. — Dual Resonance Models and Superstrings219, 221, 401
Lawvere F.W., Schanuel S.H. — Conceptual Mathematics: A First Introduction to Categories218f, 303
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering12
Bleecker D. — Gauge Theory and Variational Principles55
Borel A. — Linear algebraic groupsAG.2.4
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories100, 329
Simon B. — Representations of Finite and Compact Groups3
Hilborn R.C. — Chaos and nonlinear dynamics280—285, 491, 505—506
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring87
Eddington A.S. — Space Time and Gravitation147
Alagić S., Arbib M.A. — The Design of Well-Structured and Correct Programs5
Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1)see also “Lagrangian”, “Hamiltonian”
Libai A., Simmonds J.G. — The Nonlinear Theory of Elastic Shells40
Hartle J.B. — Gravity: An Introduction to Einstein's General Relativitysee “Newtonian mechanics”
Dekker H. — Classical and quantum mechanics of the damped harmonic oscillator91—93, principal function
Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems144, 146, 147, 150, 162, 165, 204, 234
Atkinson D., Johnson P.W. — Exercises in Quantum Field Theory: A Self-Contained Book of Questions and Answers24
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime1, 68, 116—120, 126
Adair R.K. — The Great Design: Particles, Fields, and Creation29n, 164
Sagan B.E. — The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions7
Êàñèõèí Â.Â. — Êàê ñòàòü ñîçäàòåëåì êîìïüþòåðíûõ èãð. Êðàòêîå ðóêîâîäñòâî35
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields318
Allen H.S. — Electrons and Waves43, 45, 299
Held A. (ed.) — General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2see “Lagrangian”, “Hamiltonian”
Hein J.L. — Discrete Structures, Logic, and Computability548
Mercier A. — Analytical and canonical formalism in physics9, 11, 12, 62, 55, 59, 60, 69, 94
Dirac P.A.M. — The Principles of Quantum Mechanics, Vol. 27128
Galindo A., Pascual P. — Quantum Mechanics One123
Logan J.D. — Invariant Variational Principles11
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics69, 72
Hans-Jürgen Stöckmann — Quantum Chaos: An Introduction248, 264, 272—275, 282, 292, 297—301, 304
Planck M. — Theory of heat: Being volume V of "Introduction to theoretical physics"262
Berger M., Cole M. (translator) — Geometry I (Universitext)see “Group action”
Taubner D. — Finite êepresentations of CCS and TCSP çrograms by ôutomata and Petri Nets13
Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics171—172
Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1)81—82, 339
Tarantola A. — Inverse problem theory and methods for model parameter estimation189
Trappl R., Petta P. — Creating Personalities for Synthetic Actorssee also “Human activity”
Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations299, 307
Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1)7, 143, 729, 817, see also “Lagrangian”
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness275
Junker G. — Supersymmetric Methods in Quantum and Statistical Physics68, 70
Ardema M.D. — Analytical Dynamics: Theory and Applications95
Schulman L.S. — Techniques and applications of path integration7
Kompaneyets A.S., Yankovsky G. — Theoretical Physics82
Kolb E.W., Turner M.S. — The Early Universe38—39, 47—48, 217—218, 277, 459, 479
Exner P. — Open quantum systems and Feynman integrals214, 279, 311
Shore S.N. — The Tapestry of Modern Astrophysics76
Greiner W. — Quantum mechanics: special chapters362
Hoffman B. — Strange Story of the Quantum79, 141
Phillips N.Ch. — Equivariant K-Theory and Freeness of Group Actions on C*-Algebras13, 15
D'Inverno R. — Introducing Einstein's Relatvity42, 96, 99, 115-17, 153
Mazo R.M. — Brownian Motion: Flucuations, Dynamics, and Applications79
Binmore K. — Fun and Games: A Text on Game Theory26, 349
Libermann P., Marle Ch.M. — Symplectic Geometry and Analytical Mechanics86
Eddington A.S. — Nature of the Physical World180, 241
Greiner W., Mueller B. — Quantum mechanics: symmetries9
Hume-Rothery W. — Atomic Theory for Students of Metallurgy19, 27
Milner R. — Communicating and mobile systems: the symbol for pi-calculus16, 29
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators12
Siegel W. — FieldsIII-IV
Basdevant J.-L., Dalibard J. — Quantum Mechanics294, 308
Íàçàðîâ Ñ.Â., Ìåëüíèêîâ Ï.Ï., Ñìîëüíèêîâ Ë.Ï. — Ïðîãðàììèðîâàíèå â ïàêåòàõ MS Office302
Grosche C., Steiner F. — Handbook of Feynman path integrals4-5, 7-8, 10-11, 16, 30, 41, 66, 84, 97, 133
Auletta G. — Foundations and Interpretation of Quantum Mechanics10, 20
Sternberg S. — Group Theory and Physics12
Amit D.J. — Field theory, the renormalization group, and critical phenomena106, 142, 145, 366, 368, 379
Walley P. — Statistical reasoning with imprecise probabilities24, 160—61, 235—41
Ullman J.D., Widom J. — A first course in database systems352
Richter K. — Semiclassical theory of mesoscopic quantum systems20, 23, 65
Perrin D., Pin J.-E. — Infinite Words: Automata, Semigroups, Logic abd Games448
Cheng T.-P., Li L.-F. — Gauge Theory of Elementary Particle Physics3
Rice J. — Introduction to statistical mechanics for students of physics and physical chemistry79
Simmons G.F. — Differential Equations with Applications and Historical Notes378
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity136, 166, 267, 269, 398
Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis257
Zakrzewski W.J. — Low Dimensional Sigma Models39, 150—152, 163, 178, 182, 184, 185, 191, 192, 266
Sutton O.G. — Mathematics in action26, 111
Ehlers J. (ed.) — Relativity theory and astrophysics. 1. Relativity and cosmology43
Messiah A. — Quantum mechanics. Volume 110
Lanczos C. — Variational principles of mechanics5
Ehlers J. (ed.) — Relativity theory and astrophysics. Relativity and cosmology43
Hermann R. — Differential geometry and the calculus of variations135, 136
Milner R. — Communicating and Mobile Systems: the Pi-Calculus16, 29
Schremmer A. — Reasonable basic algebra46
Bjorner D. — Software Engineering 313, 144
Atkins P. — Molecular Quantum Mechanics37, 484
Poznyak A.S., Najim K., Gomez-Ramirez E. — Self-learning control of finite Markov chains18, 47, 55, 74, 126, 172
Audin M. — Geometry145, 190
Papadopoulos G.J. (ed.), Devreese J.T. (ed.) — Path integrals and their applications in quantum, statistical, and solid state physics123
Maxwell J.C., Larmor J. — Matter and Motion145
Audin M. — Geometry145, 190
Akhiezer A.I., Berestetskii V.B. — Quantum electrodynamics156, 223
Baeten J.C.M., Middelburg Ñ.A. — Process Algebra with timing2, 10
Ross G. — Grand Unified Theories30
Carmichael R.D. — The theory of relativity26, 59, 110
Dirac P.A.M. — The Principles of Quantum Mechanics128
Siegel W. — FieldsIII-IV
Avramidi I.G. — Heat Kernel and Quantum Gravity9, 78
Feher L. (ed.), Stipsicz A. (ed.), Szenthe J. (ed.) — Topological quantum field theories and geometry of loop spaces36, 46, 97
Greiner W., Reinhardt J. — Field quantization4, 32, 344
Conen W., Neumann G. — Coordination Technology for Collaborative Applications: Organizations, Processes, and Agents4, 21, 28, 34, 44, 53, 59, 80, 81, 85, 88, 91—93, 99, 102, 106, 108—112, 115, 116, 133—138, 142, 147, 148, 189, 213
Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methodssee "Principle of least action"
Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves166, 173, 216, 241, 274, 278, 305—306, 311
Wiedemann H. — Particle accelerator physics II1
Lemons D.S. — Perfect form: Variational principles, methods, and applications in elementary physics70
Giarratano J.C., Riley G.D. — Expert Systems: Principles and Programming334
Pommaret J.F. — Systems of partial differential equations and Lie pseudogroups6.1.9
Chandler B., Magnus W. — The history of combinatorial group theory: a case study in the history of ideas165, 169
Wooldridge M. (ed.), Muller J. (ed.), Tambe M. (ed.) — Intelligent Agents II26, 65, 72
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics37, 484
Leader E., Predazzi E. — An introduction to gauge theories and modern particle physics1.29
Ìàðêîâ Å., Íèêèôîðîâ Â. — Delphi 2005 äëÿ .NET368
Frankel T. — The geometry of physics: an introduction152, 274, 524
Milonni P.W. — The quantum vacuum: introduction to quantum electrodynamics334
Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos489, 500
Ôëýíàãàí Ä. — Java â ïðèìåðàõ. Ñïðàâî÷íèê10—16, 10—21, 10—25
Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501)7, 143, 729, 817, see also "Lagrangian"
Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians7, 143, 729, 817, see also "Lagrangian"
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics393
Koonin S.E., Meredith D.C. — Computational Physics-Fortran Version16
Vafa C., Zaslow E. — Mirror symmetry146
Planck M. — The universe in the light of modern physics20, 30, 41, 93, 104
Zeidler E. — Oxford User's Guide to Mathematics920
Chandler D. — Introduction to modern statistical mechanics176
Schwinger J. — Particles, Sources, And Fields. Volume 3see also "Action principle"
Langhaar H.R. — Energy Methods in Applied Mechanics239
Argyris J., Faust G., Haase M. — An Exploration of Chaos76
Hume-Rothery W. — Electrons, Atoms, Metals and Alloys51
Attwood S.S. — Electric and Magnetic Fields13, 256, 461
Rice J.A. — Mathematical statistics and data analysis571
Magurn B.A. — An algebraic introduction to k-theory135
Abhyankar S.S. — Lectures on Algebra Volume 1651—656
Kushkuley A., Balanov Z. — Geometric Methods in Degree Theory for Equivariant Maps13
Silva V.D. — Mechanics and Strength of Materials3
Owen D. — A First Course in the Mathematical Foundations of Thermodynamics (Undergraduate Texts in Mathematics)33, 35, 68, 69, 73, 75, 77, 79, 80, 82, 84, 86, 87, 89, 93, 94, 98, 104, 109, 111, 127—129
McGettrick A.D. — The Definition of Programming Languages22, 146, 152, 204
Deitel H., Deitel P.J. — C. How to Program25, 26, 37, 56, 66
Bell E.T. — Mathematics: Queen and Servant of Science347, 350
Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possiblesee "Least action"
Frankel T. — The geometry of physics: An introduction152, 274, 524
Sturrock P. — Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas36
Landau L.D., Lifshitz E.M. — Course of Theoretical Physics (vol.3). Quantum Mechanics. Non-relativistic Theory20, 165n.
Davies P. — The New Physics394
Joyner D. — Adventures in group theory: Rubik's cube, Merlin's machine, and other mathematical toys110
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory100, 329
Exner P. — Open quantum systems and Feynman integrals214, 279, 311
Jost J. — Bosonic Strings: A mathematical treatment1, 3, 6, 7, 12, 19, 85, 87
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå