Авторизация
Поиск по указателям
Lemons D.S. — Perfect form: Variational principles, methods, and applications in elementary physics
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Perfect form: Variational principles, methods, and applications in elementary physics
Автор: Lemons D.S.
Аннотация: What does the path taken by a ray of light share with the trajectory of a thrown baseball and the curve of a wheat stalk bending in the breeze? Each is the subject of a different study yet all are optimal shapes; light rays minimize travel time while a thrown baseball minimizes action. All natural curves and shapes, and many artificial ones, manifest such "perfect form" because physical principles can be expressed as a statement requiring some important physical quantity to be mathematically maximum, minimum, or stationary. Perfect Form introduces the basic "variational" principles of classical physics (least time, least potential energy, least action, and Hamilton's principle), develops the mathematical language most suited to their application (the calculus of variations), and presents applications from the physics usually encountered in introductory course sequences.
The text gradually unfolds the physics and mathematics. While other treatments postulate Hamilton's principle and deduce all results from it, Perfect Form begins with the most plausible and restricted variational principles and develops more powerful ones through generalization. One selection of text and problems even constitutes a non-calculus of variations introduction to variational methods, while the mathematics more generally employed extends only to solving simple ordinary differential equations. Perfect Form is designed to supplement existing classical mechanics texts and to present variational principles and methods to students who approach the subject for the first time.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1997
Количество страниц: 128
Добавлена в каталог: 01.12.2013
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
"Falling light" 41
"Least" principles versus "stationary" principles 9
"Natural" place 48
action 70
Action, multiparticle 102
Aristotelean causes x 12—13
Aristotle 45 48
Bernoulli, Jacob 23
Bernoulli, Johann 23
Brachistochrone 28—29
Calculus of variations 17 23
Calculus of variations, first problem of 20
Calculus of variations, Fundamental Lemma of 23 27
Cantilever model 62—63
Catenary 55—56
Catenary, symmetric 64
Causes, Aristotelian 12—13
Center of mass coordinates 103
Comparison set 19
Compound pendulum 113
Conservative system 96
Constants of motion 89
Constraints on mechanical systems 50
Constraints on mechanical systems, holonomic 106
Constraints on mechanical systems, isopermetric 56
Constraints on mechanical systems, nonholonomic 106
Coordinates, Cartesian 26
Coordinates, center of mass 103
Coordinates, cylindrical polar 26
Coordinates, generalized 26 106—107
Coordinates, ignorable 28
Coordinates, other coordinates 90
Coordinates, spherical polar 26
Cycloid 29
de Fermat, Pierre 3—5 7 13
de Maupertuis, Pierre Louis Moreau 13 69 89
de Maupertuis, Pierre Louis Moreau, discovery of least action 71
Descartes, Rene 7 8
Dido 56
Dido, problem of 64—66
Direct variational method 19
Direct variational method versus Euler — Lagrange 30—31
Duffing's equation 42
Effective potential 105
Efficient cause 12
Elastic column 58—61
Elastic pendulum 92—93
Elasticity, modulus of 59
Electrostatic energy 63
Ellipsoid of revolution 114
Energy conservation in the restricted Hamilton's Principle 84—86
Energy conservation, lack of in the extended Hamilton's Principle 96
Equilibria 47
Equilibria, oscillations around 92—94
Euler — Lagrange equation 22—23 27—28
Euler — Lagrange equation, first integrals of 24—25
Euler, Leonhard x 13 17 23 72 89
Fermat's principle ix x 3 5 7 8—9 10 12 17 19 33 69 see
Fermat's Principle, equivalence to Least Action 69 76—77
fiber optic 37
Fiber optic, helical rays 38 43
Fiber optic, meridional rays 38 42
Fiber optic, skew rays 38
Final cause x 12—13
First integrals of the Euler — Lagrange equation 24—25
First integrals of the Euler — Lagrange equation, relation to symmetry 24
Focal length 11
Foucault, Leon 7
Foucault, Leon, measurement of the speed of light 7 71
Functional 20 82
Fundamental lemma of the calculus of variations 23 27
Galileo 47
Generalized coordinates 90—91 106—108
Generalized Snell's Law 34 36 41
Geodesic 73 77
Geometrical optics 3—5
Geometrical optics, focal length 11
Geometrical optics, image formation 9—12
Geometrical optics, paraxial ray approximation 10 42
Geometrical optics, spherical abberations 11
Geometrical optics, thin lens approximation 9—10
Gladestone — Dale Law 35
Hamilton's first principal function 82 96
Hamilton's Principle versus Newton's Laws 87 102
Hamilton's principle, extended 96
Hamilton's Principle, restricted 81—83
Hamilton, William Rowan 72 83 90 95
Hamilton, William Rowan, on Lagrange 89
Hamiltonian systems 96
Hamiltonian systems, multiparticle 100—102
Harmonic motion 92
harmonic oscillator 113
Helical rays 38 43
Hero of Alexandria 13
Hero's Problem ix 13
Holonomic constraints 106
Hooke's law 49
Huygens, Christian 33
Hydrostatic balance 50—52 54
Ignorable coordinate 28
Image formation 10—12
Index of refraction, absolute 6
Index of refraction, relative 3
Inertial reference frame 47
Isopermetric constraints 56
Jacobi's Principle of Least Action 72—73
Jacobi's Principle of Least Action, relation to Fermat's Principle 76—77
Jacobi, C.G.J. 72 73
Kepler's third law 92
Kepler's Third Law, generalized 89 92—93
L'Hospital 23
Lagrange multipliers 52—54
Lagrange's equations of motion 86
Lagrange, Joseph Louis 23 72 81 86 89
Lagrange, Joseph Louis, contribution to variational dynamics 89
Lagrange, Joseph Louis, Hamilton on 89
Lagrange, Joseph Louis, Mechanique Analtyic 89
Lagrangian 86
Lagrangian in natural form 96
Lagrangian, multiparticle 101 112—113
Least resistance 7 15
Leibniz, Gottfried Wilhelm ix 7 12 13 23
Light rays and particle trajectories 77
Light rays, helical 38 43
Light rays, meridional 38
Light rays, relation to particle trajectories 77
Light rays, skew 38
Light speed, measured by Foucault 7
Light speed, measured by Roemer 4
Line elements, Cartesian 25
Line elements, cylindrical polar 26
Line elements, spherical polar 26
Loaded beam 66
Luneberg lens 43
Mach, Ernst 13
Meridional rays 38 42
Metric 25
Mirages 34—37
Multiparticle action 102
Multiparticle Hamiltonian systems 100—102
Multiparticle Lagrangian 102 112
Natural boundary conditions 56—58
Newton's Second Law of Motion 47
Newton's Second Law of Motion from Hamilton's Principle 87
Newton's Second Law of Motion versus Hamilton's Principle 87 102
Newton, Isaac 7 23
Newton, Isaac, his Principia 47
Optical path length 33
Orbit shapes 78
Oscillations around equilibria 92—94
Oscillations around equilibria of elastic pendulum 89 92—93
Parametric ray equations 39
Paraxial ray approximation 10 42
Particle trajectories and light rays 77
Pascal, Blaise 52
Pascal, Blaise, his hydrostatic principle 52
Pendulum, elastic 89 92—93
Pendulum, spherical 78 87—89
Principia 47
Principles, Variational, Fermat's see "Least Time"
Principles, Variational, of Least Action 69—72 73
Principles, Variational, of Least Potential Energy 45—47 87
Principles, Variational, of Least Time 3 5 7 8—9 12 17 33 69 76
Principles, Variational, of Stationary Action 71
Principles, Variational, of Stationary Potential Energy 47
Principles, Variational, of Stationary Time 9
Projectile trajectory 73—75
Ray optics 3—5 7 see
Reflection, law of 3
Roemer, Olaf 4
Skew rays 38
Snell's law 3 5—6
Snell's Law, generalized 34 36 41
Speed of light, measured by Foucault 7
Speed of light, measured by Roemer 4
Spherical abberations 11
Spherical mirror 15
Spherical pendulum 78 87—89
Stability of mechanical systems 48
Stability of mechanical systems of driven Watt's governor 99—100
Stability of mechanical systems of loaded flywheel 61—62
Stability of mechanical systems of undriven Watt's governor 111—112
Symmetry, relation to first integrals 24
Thin lens approximation 9—10
True rays 7 19
Two-body problem 103—106
Variational principles xii see
Variational principles versus least principles 9
Watt's governor, driven 97—100
Watt's governor, undriven 111—112
Watt, James 97
Young's constant 59
Реклама