Авторизация
Поиск по указателям
Rotman J.J. — An Introduction to the Theory of Groups
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: An Introduction to the Theory of Groups
Автор: Rotman J.J.
Аннотация: Anyone who has studied abstract algebra and linear algebra as an undergraduate can understand this book. This edition has been completely revised and reorganized, without however losing any of the clarity of presentation that was the hallmark of the previous editions.The first six chapters provide ample material for a first course: beginning with the basic properties of groups and homomorphisms, topics covered include Lagrange's theorem, the Noether isomorphism theorems, symmetric groups, G-sets, the Sylow theorems, finite Abelian groups, the Krull-Schmidt theorem, solvable and nilpotent groups, and the Jordan-Holder theorem.The middle portion of the book uses the Jordan-Holder theorem to organize the discussion of extensions (automorphism groups, semidirect products, the Schur-Zassenhaus lemma, Schur multipliers) and simple groups (simplicity of projective unimodular groups and, after a return to G-sets, a construction of the sporadic Mathieu groups).
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1995
Количество страниц: 513
Добавлена в каталог: 09.12.2006
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
-reduced word 415
-composition series 152
-group 151
-indecomposable 153
-map 151
-series 152
-simple group 152
-subgroup 110
-subgroup 110
-congruent 236
Aanderaa, S. 450
Abbati, P. 1 57 58
Abel, N.H. 1 97
Abelian group 13
ACC 145
action 55
Adding a handle 409
Adian — Rabin theorem 469
Adian, S.I. 136
adjacency 174
Adjoining roots 92
Adjoint transformation 242
Admissible subgroup 151
Affine group Aff(n, k) 264
Affine group of the plane 71
Affine hyperplane 265
Affine isomorphism 266
Affine line 265
Affine m-subspace 265
Affine map 70
Affine n-space 265
Affinity 264
Alperin — Kuo theorem 210
Alphabet of Turing machine 421
Alternating bilinear form 235
Alternating group, 23
Alternating group, infinite a.g. 51
Amalgam 401
Artin, E. 227: 347
Ascending central series 113
Ascending chain condition 145
Associated graph to directed graph 356
Associated semigroup to Turing machine 426
Associated vector space to affine space 265
Associativity 10
Associativity, generalized 11
Attaching a 2-cell along 398
Attaching map 398
Automorphism, field 93
Automorphism, graph 174
Automorphism, group 104 156
Automorphism, Steiner system 295
Automorphism, tower 163
Auxiliary table 352
Axiom of Choice 481
Baer theorem 320
Baer — Levi theorem 391
Baer, R. 111 327 334 350 383
Balanced group 365
Base, HNN extension 407 411
Base, wreath product 172
Basepoint 370
Basic move of Turing machine 421
Basic subgroup 326
Basis, free abelian group 312
Basis, free group 343
Basis, free semigroup 349
Basis, theorem 128 319 447
Bijection 480
Bilinear form 235
Bilinear form, alternating 235
Bilinear form, symmetric 235
Binary tetrahedral group 350
Block, G-set 256
Block, nontrivial 256
Block, Steiner system 293
Boone theorem 417
Boone — Higman theorem 466
Boone's lemma 431
Boone, W.W. 430 450
Both chain conditions 146
Boundary word 435
Bouquet of circles 377
Braid group 347
Brandis, A. 210
Britton's lemma 414
Britton, J.L. 430
Bruck — Ryser Theorem 294
Burnside Basis Theorem 124
Burnside lemma 58
Burnside normal complement theorem 196
Burnside problem 136
Burnside theorem 107 110
Cameron, P.l. 286
Cancellation law 5 15
Cardano, G. 90
Carmichael — Witt theorem 297
Carmichael, R. 35
Cassidy, P.I. 34
Cauchy theorem 102
Cauchy, A.L. 1 4
Cayley 34
Cayley graph 357
Cayley theorem 52
Center 44
CenterIess 45
Central extension 201
Central isomorphism 151
Central series 117
Centralizer element 44
Centralizer subgroup 112
Centralizes 112
Chain conditions see ACC DCC or
Character group 205 340
Characteristic, abelian group of rank 1 332
Characteristic, field 218
Characteristic, subgroup 104
Characteristically simple 106
Chevalley groups 246
Chief series 152
Chinese remainder theorem for G-sets 260
Church's thesis 423
Circle group T 18
Circuit 371
Class equation 74
Class of nilpotency 115
Classical groups 239
Classification theorem of finite simple groups 246
Closed path 368
Coboundary 183
Cocycle 180
Cocycle, identity 180
Cohomology group, first 212
Cohomology group, second 183
Cole, F.N. 225 292
Collapse 354
Collapse, double 31
Collapse, enumeration 354
Collineation 274
Collins, D.l. 430
Coloring 60
Common system of representatives 25
Commutative diagram 183
Commutator 33
Commutator, identities 119
Commutator, subgroup 33
Commute 5
Companion matrix 138
Complement 167
Complete factorization 6
Complete group 158
Complete set of coset representatives = transversal 178
Complete wreath product 175
COMPLEX 366
Complex, components 369
Complex, connected 368
Complex, covering 377
Complex, dimension 367
Complex, edge 367
Complex, isomorphic 371
Complex, pointed 370
Complex, quotient 373
Complex, simply connected 372
Complex, tree 372
Complex, universal covering 383
Complex, vertices 366
Complex, wedge 399
Components of complex 369
Composition factors 101
Composition series 98
Computation of Turing machine 422
Congruence class 13
Congruence on semigroup 349
Congruent matrices 236
Congruent matrices, - 236
Conjugacy class 43
Conjugate elements 31 43
Conjugate elements, subgroups 44
Conjugation 18
Connected complex 368
Continuation 381
Contraction of Steiner system 294
Contravariant functor 336
Convex combination 70
Corner, A.L.S. 334
Correspondence theorem 38
Coset 4
Countable 484
Counting principle 294
Covariant functor 335
Cover group 208
Covering complex 377
Covering map 382
Coxeter, H.S.M. 351
Crossed homomorphism 211
Cubic formula 90
CYCLE 3
Cycle, index 60
Cycle, structure, same 46
Cyclic group 21
Cyclic permutation of word 434
Cyclic subgroup 21
Cyclic submodule 135
Cyclically reduced word 434
DATA 179
DCC 146
Decision process 418
Dedekind law 37
Degree, field extension 93
Degree, G-set 55
Degree, vertex in graph 358
Dehn, M. 430
Derivation 211
Derived series 104
Derived subgroup = commutator subgroup 33
Descartes, R. 90
Descending central series 113
Descending chain condition 146
Diagram 435
Diagram, commutative 183
Dickson, L.E. 232 246
Dicyclic group 351
Dihedral group 68
Dilatation 228
Dimension, affine space 265
Dimension, complex 367
Dimension, projective space 273
Dimension, simplex 366
Direct factor 126
Direct product, 40
Direct product, infinite 308
Direct sum, infinite 308
Direct sum, matrices 138
Direct sum, modules 135
Direct summand 126 308
Directed graph 356
Directed polygon 433
Directed polygon, labeled directed polygon 433
Dirichlet, P.G.L. 200
Disjoint permutations 5
Disjoint subcomplexes 368
Divisible by n 309
Divisible group 207 320
Division algorithm 486
Double coset 31
Doubly transitive 250
Dual diagram 323
Dyadic rationals 331
EDGE 367
Eilenberg, S. 358
Eilenberg- Moore 54
Elementary abelian p-group 42
Elementary divisors, abelian group 132
Elementary divisors, matrix 141
Elementary moves on path 369
Elementary operation in semigroup 426
Elementary transvection 220
Empty word 344
End path 368
End path class 368
Endomorphism 144
Endomorphism, ring 334
Engel theorem 115
Enumerates 422
Equivalence, characteristics 332
Equivalence, class 477
Erlangen program 72
Euclid's lemma 490
Euler -function 27
Euler — Poincare characteristic 384
Evaluation map 341
Even permutation 8
Exact sequence 307
Exact sequence, short 307
EXPONENT 26
Exponent, minimal 202
Ext(Q, K) 186
Extension 154
Extension, central 201
Extensions 183
Extensions, forms 238
Extensions, G-invariant 257
Extensions, normal series 99
Extensions, relation 477
Extra-special group 124
Factor group = quotient group 32
Factor group = quotient group, normal series 97
Factor set 180
Faithful G-set 248
Feit — Thompson theorem 107
Fermat theorem 26
Feynmann, R.P. 84
Fiber 380
Field 93
Finite field GF(q) 28
Finite module 135
Finite order, module 135
Finitely generated group 314
Finitely generated group module 135
Finitely presented 400
Реклама